Chemistry MCQS

A. Electron
B. Proton
C. Neutron
D. Quark
A. Protons
B. Neutrons
C. Electrons
D. Nucleons
A. Niels Bohr
B. Erwin Schrödinger
C. J.J. Thomson
D. Dmitri Mendeleev
A. 1
B. -1
C. 0
D. 2
A. Azimuthal
B. Principal
C. Magnetic
D. Spin
A. 2
B. 6
C. 8
D. 10
A. James Chadwick
B. Ernest Rutherford
C. Marie Curie
D. J.J. Thomson
A. Carbon-14
B. Carbon-12
C. Carbon-13
D. Carbon-15
A. Spin
B. Energy level
C. Principal quantum number
D. Magnetic quantum number
A. Sum of protons and electrons
B. Number of neutrons
C. Number of protons
D. Sum of protons and neutrons
A. 1
B. 2
C. 3
D. 4
A. Hydrogen
B. Helium
C. Lithium
D. Beryllium
A. Energy level
B. Orbital shape
C. Spin
D. Magnetic quantum number
A. -1
B. 1
C. 0
D. -2
A. 0
B. 1
C. -1
D. 2
A. Electron
B. Proton
C. Neutron
D. Nucleus
A. Protons and electrons
B. Protons and neutrons
C. Electrons only
D. Neutrons only
A. Wave functions
B. Planetary orbits
C. Particle paths
D. Circular motion
A. 2
B. 8
C. 18
D. 32
A. Potassium
B. Calcium
C. Argon
D. Scandium
A. Erwin Schrödinger
B. Werner Heisenberg
C. Max Planck
D. Louis de Broglie
A. Magnetic
B. Principal
C. Azimuthal
D. Spin
A. Half-life
B. Decay constant
C. Radiometric time
D. Nuclear stability
A. Highest energy to lowest energy
B. Lowest energy to highest energy
C. Randomly
D. Alternating energy levels
A. Valence electrons
B. 2
C. 8
D. 18
A. 2
B. 6
C. 10
D. 14
A. Werner Heisenberg
B. Niels Bohr
C. Max Planck
D. Erwin Schrödinger
A. Isotope
B. Ion
C. Isomer
D. Isoform
A. Spherical
B. Linear
C. Dumbbell
D. Tetrahedral
A. Scandium
B. Titanium
C. Vanadium
D. Chromium
A. Proton
B. Neutron
C. Alpha particle
D. Positron
A. Same mass number, different atomic number
B. Same atomic number, different mass number
C. Same number of protons and electrons
D. Same number of neutrons
A. Neon
B. Sodium
C. Chlorine
D. Potassium
A. Hydrogen
B. Helium
C. Oxygen
D. Nitrogen
A. Specific orbit
B. Fixed shell
C. Defined path
D. Region of space
A. Isotones
B. Isobars
C. Isomers
D. Isotopes
A. Louis de Broglie
B. Max Planck
C. Werner Heisenberg
D. Ernest Rutherford
A. Wavelength
B. Frequency
C. Amplitude
D. Crest
A. Waves
B. Particles
C. Clouds
D. Orbits
A. Valence shell
B. Principal shell
C. Quantum shell
D. Core shell
A. A region of high probability
B. A circular path
C. A fixed trajectory
D. A linear path
A. Momentum
B. Energy
C. Speed
D. Spin
A. 2
B. 6
C. 10
D. 14
A. Magnetic
B. Principal
C. Azimuthal
D. Spin
A. Silicon
B. Phosphorus
C. Sulfur
D. Chlorine
A. Hydrogen
B. Helium
C. Oxygen
D. Fluorine
A. Ionization
B. Electron affinity
C. Electronegativity
D. Electron transfer
A. Electronegativity
B. Electron affinity
C. Ionization energy
D. Atomic radius
A. Wave function of an electron
B. Mass of an electron
C. Charge of an electron
D. Spin of an electron
A. Photoelectric effect
B. Compton scattering
C. Wave-particle duality
D. Quantum tunneling
A. Niels Bohr
B. Max Planck
C. Louis de Broglie
D. Albert Einstein
A. Bromine
B. Krypton
C. Rubidium
D. Iodine
A. Spin
B. Magnetic
C. Principal
D. Azimuthal
A. Radioactive decay
B. Nuclear fission
C. Nuclear fusion
D. Nuclear transmutation
A. Proton
B. Neutron
C. Electron
D. Nucleus
A. Isotones
B. Isomers
C. Isobars
D. Isotopes
A. Electrons
B. Protons
C. Neutrons
D. Nuclei
A. 2 protons and 2 neutrons
B. 2 electrons and 2 protons
C. 3 protons and 2 neutrons
D. 4 protons and 4 neutrons
A. Erwin Schrödinger
B. Werner Heisenberg
C. Louis de Broglie
D. Max Planck
A. Ionization energy
B. Electron affinity
C. Electronegativity
D. Atomic radius
A. Electron
B. Proton
C. Neutron
D. Positron
A. Atomic mass
B. Atomic number
C. Molar mass
D. Isotopic mass
A. Iron
B. Cobalt
C. Nickel
D. Copper
A. Lowest energy state of an atom
B. Highest energy state of an atom
C. Stable state of an atom
D. Excited state of an atom
A. Aufbau principle
B. Pauli exclusion principle
C. Hund's rule
D. Heisenberg uncertainty principle
A. Neutron
B. Proton
C. Electron
D. Positron
A. Electron cloud
B. Orbital
C. Nucleus
D. Energy level
A. Energy levels
B. Orbitals
C. Sublevels
D. Quantum states
A. Max Planck
B. Niels Bohr
C. Louis de Broglie
D. Werner Heisenberg
A. N2
B. CO
C. O2
D. H2
A. Energy level
B. Orbital
C. Sublevel
D. Quantum state
A. Same number of protons
B. Same number of electrons
C. Same atomic mass
D. Same nuclear charge
A. Rubidium
B. Strontium
C. Yttrium
D. Zirconium
A. Ionization energy
B. Electron affinity
C. Electronegativity
D. Atomic radius
A. Proton
B. Neutron
C. Positron
D. Electron
A. Indium
B. Tin
C. Antimony
D. Tellurium
A. +1/2 or -1/2
B. 0 or 1
C. +1 or -1
D. 1/2 or 1
A. Radioactive decay
B. Nuclear fusion
C. Nuclear transmutation
D. Fission reaction
A. Modern periodic law
B. Mendeleev's law
C. Avogadro's law
D. Boyle's law
A. Uranium
B. Neptunium
C. Plutonium
D. Americium
A. Clove-shaped
B. Spherical
C. Dumbbell
D. Tetrahedral
A. d
B. s
C. p
D. f
A. Nearest noble gas
B. Noble gas one period down
C. Noble gas two periods down
D. Noble gas one group over
A. Electron configuration
B. Atomic structure
C. Electron arrangement
D. Energy distribution
A. Gain electrons
B. Lose electrons
C. Form ions
D. Bond with other atoms
A. Radon
B. Radium
C. Rutherfordium
D. Rhodium
A. Splitting of a large nucleus
B. Fusion of small nuclei
C. Emission of alpha particles
D. Absorption of neutrons
A. Isotope
B. Isoelectronic
C. Isomer
D. Isotone
A. Break a nucleus into protons and neutrons
B. Disintegrate an atom
C. Remove an electron from a nucleus
D. Hold a nucleus together
A. Electron
B. Proton
C. Neutron
D. Nucleus
A. Shell structure of electrons
B. Orbitals of electrons
C. Sublevels of electrons
D. Energy levels of electrons
A. Passing through a barrier
B. Colliding with a barrier
C. Reflecting off a barrier
D. Absorbing a barrier
A. Same mass number, different atomic number
B. Same atomic number, different mass number
C. Same energy level, different spin
D. Same spin, different energy level
A. Francium
B. Radium
C. Actinium
D. Radon
A. Repulsion between electrons
B. Attraction between electrons and protons
C. Reduction of effective nuclear charge
D. Increase in effective nuclear charge
A. Lanthanides
B. Actinides
C. Alkaline earth metals
D. Halogens
A. Radium
B. Actinium
C. Thorium
D. Uranium
A. Half the atoms in a sample to decay
B. All atoms in a sample to decay
C. One-third of atoms in a sample to decay
D. One-fourth of atoms in a sample to decay
A. s
B. p
C. d
D. f
A. Emission spectrum
B. Absorption spectrum
C. Fluorescence
D. Incandescence
A. Two electrons
B. Electron and proton
C. Photon and electron
D. Electron and neutron
A. Covalent
B. Ionic
C. Metallic
D. Polar
A. Metal to nonmetal
B. Nonmetal to metal
C. Metal to metal
D. Nonmetal to nonmetal
A. Gain or lose electrons to achieve a full outer shell
B. Share electrons to achieve a half-filled outer shell
C. Share electrons to achieve a full outer shell
D. Lose electrons to achieve a half-filled outer shell
A. Ionic
B. Covalent
C. Metallic
D. Polar
A. Nonpolar covalent
B. Polar covalent
C. Ionic
D. Metallic
A. Ability to attract electrons
B. Ability to lose electrons
C. Nuclear charge
D. Atomic size
A. HCl
B. O2
C. N2
D. F2
A. 104.5°
B. 120°
C. 180°
D. 90°
A. Sigma
B. Pi
C. Delta
D. Theta
A. Fluorine
B. Oxygen
C. Nitrogen
D. Chlorine
A. Covalent
B. Ionic
C. Metallic
D. Polar
A. Hydrogen bond
B. Ionic bond
C. Covalent bond
D. Metallic bond
A. Polar covalent
B. Nonpolar covalent
C. Ionic
D. Metallic
A. Two
B. One
C. Three
D. Four
A. Tetrahedral
B. Linear
C. Trigonal planar
D. Octahedral
A. Metallic
B. Ionic
C. Covalent
D. Polar
A. O2
B. HCl
C. Cl2
D. NH3
A. Triple bond
B. Double bond
C. Single bond
D. Quadruple bond
A. Polar
B. Nonpolar
C. Ionic
D. Metallic
A. Ionic
B. Covalent
C. Metallic
D. Polar
A. Linear
B. Trigonal planar
C. Tetrahedral
D. Bent
A. H2O
B. CO2
C. NH3
D. CH4
A. 120°
B. 109.5°
C. 180°
D. 90°
A. Nonpolar covalent
B. Polar covalent
C. Ionic
D. Metallic
A. 109.5°
B. 120°
C. 180°
D. 90°
A. Nonpolar covalent
B. Polar covalent
C. Ionic
D. Metallic
A. Trigonal bipyramidal
B. Octahedral
C. Linear
D. T-shaped
A. Polar covalent
B. Nonpolar covalent
C. Ionic
D. Metallic
A. Four single bonds
B. One double bond
C. One triple bond
D. One quadruple bond
A. Dipole-dipole
B. London dispersion
C. Metallic
D. Ionic
A. 109.5°
B. 120°
C. 180°
D. 90°
A. Pi
B. Sigma
C. Delta
D. Theta
A. Trigonal pyramidal
B. Linear
C. Tetrahedral
D. Bent
A. One single bond and two double bonds
B. One single bond and two triple bonds
C. Three single bonds
D. One double bond and two single bonds
A. Metallic
B. Ionic
C. Covalent
D. Polar
A. 180°
B. 120°
C. 90°
D. 109.5°
A. London dispersion
B. Ionic
C. Covalent
D. Dipole-dipole
A. Seesaw
B. Linear
C. Trigonal planar
D. T-shaped
A. Molecular shapes
B. Bond strengths
C. Electron affinities
D. Ionization energies
A. Ionic
B. Covalent
C. Metallic
D. Polar
A. 120°
B. 109.5°
C. 180°
D. 90°
A. Two single bonds
B. One double bond
C. One triple bond
D. Three single bonds
A. Nonpolar covalent
B. Polar covalent
C. Ionic
D. Metallic
A. 109.5°
B. 120°
C. 180°
D. 90°
A. CO2
B. H2O
C. NH3
D. SO2
A. Octahedral
B. Linear
C. Tetrahedral
D. Square planar
A. Nonpolar covalent
B. Polar covalent
C. Ionic
D. Metallic
A. Two single bonds
B. One double bond
C. One triple bond
D. Two double bonds
A. Dipole-dipole
B. London dispersion
C. Metallic
D. Ionic
A. 107°
B. 120°
C. 180°
D. 90°
A. Polar covalent
B. Nonpolar covalent
C. Ionic
D. Metallic
A. Square pyramidal
B. Octahedral
C. Linear
D. Square planar
A. O3
B. N2
C. CO2
D. SO2
A. 120°
B. 109.5°
C. 180°
D. 90°
A. Hydrogen bond
B. London dispersion
C. Metallic
D. Ionic
A. One single bond and two double bonds
B. One single bond and two triple bonds
C. Three single bonds
D. One double bond and two single bonds
A. Polar covalent
B. Nonpolar covalent
C. Ionic
D. Metallic
A. 90°
B. 120°
C. 180°
D. 90°
A. SO3
B. CH4
C. H2O
D. CO2
A. Linear
B. Trigonal planar
C. Tetrahedral
D. Bent
A. Hydrogen bond
B. London dispersion
C. Metallic
D. Ionic
A. 109.5°
B. 120°
C. 180°
D. 90°
A. Ionic
B. Covalent
C. Metallic
D. Polar
A. Square planar
B. Octahedral
C. Linear
D. Square pyramidal
A. Synthesis
B. Decomposition
C. Combustion
D. Redox
A. Oxygen
B. Hydrogen
C. Carbon dioxide
D. Nitrogen
A. Decomposition
B. Synthesis
C. Combustion
D. Displacement
A. Displacement
B. Redox
C. Combustion
D. Synthesis
A. Redox
B. Decomposition
C. Combustion
D. Synthesis
A. Double displacement
B. Single displacement
C. Synthesis
D. Combustion
A. Combustion
B. Synthesis
C. Decomposition
D. Redox
A. Sodium chloride and water
B. Hydrogen gas and oxygen gas
C. Sodium hydroxide and water
D. Hydrochloric acid and oxygen gas
A. Synthesis
B. Decomposition
C. Single displacement
D. Double displacement
A. Decomposition
B. Synthesis
C. Combustion
D. Displacement
A. CH₄ + 2O₂ → CO₂ + 2H₂O
B. CH₄ + O₂ → CO + H₂O
C. CH₄ + 2O₂ → CO + 2H₂O
D. CH₄ + O₂ → CO₂ + H₂O
A. Endothermic
B. Exothermic
C. Combustion
D. Redox
A. Synthesis
B. Decomposition
C. Single displacement
D. Double displacement
A. 2HCl + Na₂CO₃ → 2NaCl + H₂O + CO₂
B. HCl + Na₂CO₃ → NaCl + H₂O + CO₂
C. 2HCl + Na₂CO₃ → NaCl + H₂O + CO₂
D. HCl + Na₂CO₃ → 2NaCl + H₂O + CO₂
A. Zinc chloride and water
B. Zinc oxide and water
C. Zinc hydroxide and hydrogen gas
D. Zinc chloride and hydrogen gas
A. Decomposition
B. Synthesis
C. Combustion
D. Redox
A. Double displacement
B. Single displacement
C. Synthesis
D. Decomposition
A. Fermentation
B. Combustion
C. Synthesis
D. Decomposition
A. Single displacement
B. Double displacement
C. Synthesis
D. Decomposition
A. Decomposition
B. Synthesis
C. Single displacement
D. Redox
A. Potassium sulfate and water
B. Potassium hydrogen sulfate and water
C. Potassium sulfate and hydrogen gas
D. Potassium hydroxide and sulfur dioxide
A. 2Al + 6HCl → 2AlCl₃ + 3H₂
B. Al + HCl → AlCl₃ + H₂
C. Al + 2HCl → AlCl₂ + H₂
D. 2Al + 3HCl → AlCl₃ + H₂
A. Decomposition
B. Synthesis
C. Single displacement
D. Double displacement
A. Combustion
B. Synthesis
C. Decomposition
D. Redox
A. 2H₂SO₄ + 2NaOH → 2Na₂SO₄ + 2H₂O
B. H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O
C. H₂SO₄ + NaOH → Na₂SO₄ + H₂O
D. 2H₂SO₄ + NaOH → Na₂SO₄ + 2H₂O
A. Exothermic
B. Endothermic
C. Combustion
D. Redox
A. Decomposition
B. Synthesis
C. Combustion
D. Redox
A. Potassium nitrate and water
B. Nitrogen gas and oxygen gas
C. Potassium hydroxide and water
D. Potassium nitrite and water
A. Neutralization
B. Combustion
C. Synthesis
D. Decomposition
A. Displacement
B. Synthesis
C. Decomposition
D. Redox
A. Sodium acetate and water
B. Carbon dioxide and water
C. Sodium acetate and carbon dioxide
D. Sodium hydroxide and carbon dioxide
A. CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
B. CaCO₃ + HCl → CaCl₂ + H₂O + CO₂
C. CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O
D. CaCO₃ + HCl → CaCl₂ + CO₂ + H₂O
A. Redox
B. Single displacement
C. Double displacement
D. Synthesis
A. Synthesis
B. Decomposition
C. Redox
D. Combustion
A. Sodium chloride and barium sulfate
B. Barium sulfate and sodium chloride
C. Sodium chloride and barium chloride
D. Sodium sulfate and barium chloride
A. Decomposition
B. Synthesis
C. Redox
D. Combustion
A. Magnesium chloride and water
B. Carbon dioxide and water
C. Magnesium chloride and carbon dioxide
D. Magnesium hydroxide and carbon dioxide
A. H₂SO₄ + K₂CO₃ → K₂SO₄ + H₂O + CO₂
B. H₂SO₄ + K₂CO₃ → K₂SO₄ + CO₂ + H₂O
C. H₂SO₄ + K₂CO₃ → K₂SO₄ + 2H₂O + CO₂
D. 2H₂SO₄ + K₂CO₃ → 2K₂SO₄ + 2H₂O + 2CO₂
A. Decomposition
B. Synthesis
C. Single displacement
D. Double displacement
A. Synthesis
B. Decomposition
C. Single displacement
D. Double displacement
A. Silver chloride and sodium nitrate
B. Sodium chloride and silver nitrate
C. Silver chloride and sodium chloride
D. Sodium nitrate and silver chloride
A. Neutralization
B. Combustion
C. Synthesis
D. Decomposition
A. Potassium acetate and water
B. Acetic acid and potassium hydroxide
C. Potassium acetate and acetic acid
D. Water and potassium hydroxide
A. Synthesis
B. Decomposition
C. Redox
D. Combustion
A. Sodium sulfate and hydrogen sulfide
B. Sodium hydrogen sulfate and water
C. Sodium sulfate and water
D. Hydrogen sulfide and sodium sulfate
A. CaO + H₂O → Ca(OH)₂
B. CaO + H₂O → CaOH + H₂
C. CaO + 2H₂O → Ca(OH)₂
D. CaO + 2H₂O → CaOH + H₂
A. Synthesis
B. Decomposition
C. Single displacement
D. Double displacement
A. Synthesis
B. Decomposition
C. Redox
D. Single displacement
A. Potassium chloride and hydrogen sulfide
B. Potassium chloride and sulfuric acid
C. Hydrogen chloride and potassium sulfide
D. Hydrogen sulfide and potassium chloride
A. Fermentation
B. Combustion
C. Synthesis
D. Decomposition
A. Displacement
B. Synthesis
C. Decomposition
D. Redox
A. Calcium nitrate and carbon dioxide
B. Nitrogen gas and water
C. Calcium nitrate and water
D. Carbon dioxide and calcium hydroxide
A. Combustion
B. Synthesis
C. Decomposition
D. Redox
A. 2HCl + Na₂SO₃ → 2NaCl + H₂O + SO₂
B. HCl + Na₂SO₃ → NaCl + H₂O + SO₂
C. HCl + Na₂SO₃ → NaCl + H₂O + 2SO₂
D. 2HCl + Na₂SO₃ → 2NaCl + H₂O + 2SO₂
A. Double displacement
B. Single displacement
C. Synthesis
D. Decomposition
A. Synthesis
B. Decomposition
C. Redox
D. Combustion
A. Barium sulfate and sodium chloride
B. Barium chloride and sodium sulfate
C. Sodium chloride and barium sulfate
D. Sodium sulfate and barium chloride
A. H₂O₂ + MnO₂ → Mn(OH)₂ + O₂
B. 2H₂O₂ + MnO₂ → Mn(OH)₂ + O₂
C. H₂O₂ + MnO₂ → MnO + H₂O + O₂
D. 2H₂O₂ + MnO₂ → MnO + H₂O + O₂
A. Sodium sulfate and water
B. Sodium hydroxide and sulfuric acid
C. Sodium sulfate and hydrogen gas
D. Water and sodium hydroxide
A. Synthesis
B. Decomposition
C. Redox
D. Combustion
A. Displacement
B. Synthesis
C. Decomposition
D. Redox
A. 2Na₂S + 2HCl → 2NaCl + H₂S
B. Na₂S + HCl → NaCl + H₂S
C. Na₂S + 2HCl → 2NaCl + H₂S
D. Na₂S + HCl → NaCl + 2H₂S
A. Synthesis
B. Decomposition
C. Single displacement
D. Double displacement
A. Combustion
B. Synthesis
C. Decomposition
D. Redox
A. Potassium bromide and water
B. Bromine gas and water
C. Potassium hydroxide and hydrobromic acid
D. Potassium bromide and hydrogen gas
A. Energy transfer
B. Molecular structure
C. Chemical reactions
D. Particle acceleration
A. First Law
B. Second Law
C. Third Law
D. Zeroth Law
A. Disorder
B. Temperature
C. Pressure
D. Volume
A. First Law
B. Second Law
C. Third Law
D. Zeroth Law
A. Heat exchange
B. Pressure change
C. Volume change
D. Temperature change
A. Gibbs Free Energy
B. Helmholtz Free Energy
C. Enthalpy
D. Internal Energy
A. ΔS = Q/T
B. ΔS = T/Q
C. ΔS = Q - T
D. ΔS = Q + T
A. 1 atm pressure and 0°C
B. 1 atm pressure and 25°C
C. 0 atm pressure and 0 K
D. 0 atm pressure and 100°C
A. Isobaric expansion
B. Isothermal compression
C. Adiabatic process
D. Isenthalpic process
A. Zeroth Law
B. First Law
C. Second Law
D. Third Law
A. Direction of heat transfer
B. Conservation of energy
C. Entropy increase
D. Temperature equilibrium
A. 0 kJ/mol
B. 1 kJ/mol
C. -1 kJ/mol
D. Depends on the element
A. Endothermic
B. Exothermic
C. Adiabatic
D. Isothermal
A. Heat engine
B. Refrigerator
C. Heat pump
D. All of the above
A. 0 kJ/mol
B. 1 kJ/mol
C. -1 kJ/mol
D. Depends on the reaction
A. Constant temperature
B. Constant pressure
C. Constant volume
D. Adiabatic conditions
A. Molecular velocities
B. Molecular masses
C. Molecular sizes
D. Molecular energies
A. 0 J/(mol·K)
B. 1 J/(mol·K)
C. -1 J/(mol·K)
D. Depends on the substance
A. Negative
B. Positive
C. Zero
D. Depends on the process
A. First Law
B. Second Law
C. Third Law
D. Zeroth Law
A. Change in heat
B. Change in temperature
C. Change in pressure
D. Change in volume
A. Temperature remains constant
B. Pressure remains constant
C. Volume remains constant
D. Internal energy remains constant
A. ΔG° = -RT ln(K)
B. ΔG° = RT ln(K)
C. ΔG° = K/RT
D. ΔG° = -K/RT
A. H
B. E
C. G
D. S
A. ΔH° = 0
B. ΔH° = 1 kJ/mol
C. ΔH° = -1 kJ/mol
D. Depends on the reaction
A. Temperature
B. Pressure
C. Volume
D. Concentration
A. Not changing
B. Constant heat
C. Without heat exchange
D. Intense heat
A. Heat transfer in chemical reactions
B. Molecular structures of compounds
C. Particle interactions
D. Pressure changes in reactions
A. Heat capacity
B. Heat transfer
C. Radiant energy emission
D. Volume change
A. W
B. Q
C. ΔU
D. P
A. ΔG° = -RT ln(K)
B. ΔG° = RT ln(K)
C. ΔG° = K/RT
D. ΔG° = -K/RT
A. Heat
B. Work
C. Energy
D. Pressure
A. No change in entropy
B. No change in temperature
C. No change in pressure
D. No net change in the universe
A. Kinetic and potential energy
B. Heat and work
C. Pressure and volume
D. Entropy and enthalpy
A. Volume
B. Temperature
C. Internal energy
D. Enthalpy
A. Heat of formation
B. Heat of combustion
C. Heat of solution
D. Heat of fusion
A. Q = mcΔT
B. Q = mΔT/C
C. Q = C/mΔT
D. Q = ΔT/mC
A. Increase
B. Decrease
C. Remain constant
D. Depend on the system
A. Temperature
B. Pressure
C. Volume
D. Enthalpy
A. Temperature
B. Volume
C. Pressure
D. Heat transfer
A. Condensation
B. Vaporization
C. Sublimation
D. Deposition
A. Ideal gas behavior
B. Vapor pressure of a substance
C. Heat capacity of a gas
D. Enthalpy change in a reaction
A. (5/2)R
B. (7/2)R
C. (3/2)R
D. (9/2)R
A. 1 atm pressure and 0 K
B. 1 atm pressure and 25°C
C. 0 atm pressure and 0 K
D. 0 atm pressure and 100°C
A. 1.67
B. 1.4
C. 1
D. 2
A. Pressure
B. Volume
C. Entropy
D. Heat capacity
A. 0
B. 1
C. γ
D. -1
A. Temperature
B. Pressure
C. Volume
D. Internal energy
A. 1 - T₂/T₁
B. T₂/T₁
C. 1 - T₁/T₂
D. (T₁ - T₂)/T₁
A. Temperature
B. Pressure
C. Concentration
D. Volume
A. 0°C and 1 atm pressure
B. 100°C and 1 atm pressure
C. 0°C and 0 K
D. 100°C and 0 K
A. Temperature
B. Volume
C. Pressure
D. Entropy
A. Gas constant
B. Ideal pressure
C. Universal gas constant
D. Volume constant
A. Heat transfer during combustion
B. Vaporization of a substance
C. Phase transition of a substance
D. Chemical equilibrium
A. Pressure
B. Temperature
C. Volume
D. Molecular interactions
A. Heat transfer
B. Volume change
C. Pressure change
D. No heat transfer
A. ΔH = ΔU + ΔP
B. ΔH = ΔU + PΔV
C. ΔH = ΔU - PΔV
D. ΔH = ΔU/ΔP
A. J/(mol·K)
B. J/mol
C. J/L
D. J/K
A. The system does work on the surroundings
B. The surroundings do work on the system
C. No work is done
D. The work is reversible
A. All three phases coexist
B. The vapor pressure becomes zero
C. The substance becomes a supercritical fluid
D. The substance becomes a solid
A. Sublimation
B. Condensation
C. Vaporization
D. Melting
A. Heat transfer
B. Volume change
C. Pressure change
D. No heat transfer
A. Enthalpy
B. Internal energy
C. Entropy
D. Volume
A. Brought back to its initial state with no change in entropy
B. Achieved in one direction only
C. Spontaneous
D. Accompanied by a change in temperature
A. Adiabatic index
B. Isentropic exponent
C. Enthalpy ratio
D. Entropy index
A. Hydroxyl (-OH)
B. Carbonyl (C=O)
C. Amino (-NH₂)
D. Ester (-COO-)
A. Acetic acid
B. Propionic acid
C. Butanoic acid
D. Ethanoic acid
A. Reduction
B. Oxidation
C. Hydrolysis
D. Esterification
A. Stereoisomerism
B. Structural isomerism
C. Geometric isomerism
D. Optical isomerism
A. Carbonyl (C=O)
B. Hydroxyl (-OH)
C. Carboxyl (-COOH)
D. Amino (-NH₂)
A. CnH₂n
B. CnH2n+2
C. CnH2n-2
D. CnHn
A. CH₃OH
B. CH₃CH₂OH
C. (CH₃)₂CHOH
D. CH₃COOH
A. Pentane
B. Butane
C. Hexane
D. Propane
A. Ether (-O-)
B. Aldehyde (C=O)
C. Carboxylic acid (-COOH)
D. Amine (-NH₂)
A. sp²
B. sp³
C. sp
D. sp⁴
A. Aldehyde
B. Ketone
C. Carboxylic acid
D. Ester
A. Esterification
B. Hydrolysis
C. Saponification
D. Dehydration
A. Propanal
B. Butanal
C. Pentanal
D. Ethanal
A. CnH₂n+2
B. CnH2n
C. CnH2n-2
D. CnHn
A. Halogenation
B. Hydrogenation
C. Dehydration
D. Oxidation
A. Au
B. Ag
C. Fe
D. Cu
A. Neon
B. Sodium
C. Chlorine
D. Sulfur
A. Iodine
B. Iron
C. Indium
D. Iridium
A. Ethene
B. Propane
C. Benzene
D. Butyne
A. Butanol
B. Ethanol
C. Propanol
D. Pentanol
A. CH₃NH₂
B. (CH₃)₂NH
C. NH₃
D. C₆H₅NH₂
A. Alkene
B. Aldehyde
C. Ketone
D. Ether
A. Carboxyl (-COOH)
B. Carbonyl (C=O)
C. Hydroxyl (-OH)
D. Ester (-COO-)
A. Combustion
B. Halogenation
C. Hydrolysis
D. Oxidation
A. Acetone
B. Propanone
C. Butanone
D. Ethanal
A. Ethylamine
B. Propylamine
C. Butylamine
D. Ethylmethanamine
A. Structural isomerism
B. Stereoisomerism
C. Geometric isomerism
D. Optical isomerism
A. sp
B. sp²
C. sp³
D. sp⁴
A. Esterification
B. Transesterification
C. Saponification
D. Hydrolysis
A. Hexane
B. Butane
C. Pentane
D. Octane
A. CH₃OH
B. CH₃CH₂OH
C. (CH₃)₃COH
D. CH₃COOH
A. Halogenation
B. Hydrogenation
C. Dehydration
D. Oxidation
A. Butanone
B. Pentanone
C. Hexanone
D. Propanone
A. Ethene
B. Propene
C. Butene
D. Butadiene
A. Ethylamine
B. Propylamine
C. Butylamine
D. Ethylmethanamine
A. Carbonyl (C=O)
B. Hydroxyl (-OH)
C. Carboxyl (-COOH)
D. Amino (-NH₂)
A. Alkane
B. Alkene
C. Alkyne
D. Dihalide
A. Geometric isomerism
B. Structural isomerism
C. Stereoisomerism
D. Optical isomerism
A. Ethyl acetate
B. Methyl acetate
C. Butyl acetate
D. Propyl acetate
A. Hydrogenation
B. Hydration
C. Halogenation
D. Dehydration
A. CH₃NH₂
B. (CH₃)₂NH
C. NH₃
D. C₆H₅NH₂
A. Halogenation
B. Hydrogenation
C. Dehydration
D. Oxidation
A. Methyl ethylamine
B. Ethyl methylamine
C. Dimethylamine
D. Diethylamine
A. Amide (-CONH₂)
B. Carbonyl (C=O)
C. Hydroxyl (-OH)
D. Ester (-COO-)
A. Methyl propanoate
B. Ethyl methanoate
C. Propyl ethanoate
D. Ethyl propanoate
A. Reduction
B. Oxidation
C. Hydrolysis
D. Esterification
A. Epoxidation
B. Hydrogenation
C. Hydration
D. Halogenation
A. Propylamide
B. Butanamide
C. Pentanamide
D. Ethylamide
A. Esterification
B. Transesterification
C. Saponification
D. Hydrolysis
A. Ethene
B. Propene
C. Butene
D. Ethyne
A. Butanone
B. Pentanone
C. Hexanone
D. Propanone
A. Halogenation
B. Hydration
C. Dehydration
D. Halide substitution
A. Ethylamine
B. Propylamine
C. Butylamine
D. Ethylmethanamine
A. Ethylene glycol
B. Propylene glycol
C. Glycerol
D. Butane-1,3-diol
A. Hydrogenation
B. Halogenation
C. Hydration
D. Markovnikov addition
A. Methyl propanoate
B. Ethyl methanoate
C. Propyl ethanoate
D. Ethyl propanoate
A. Ozonolysis
B. Hydrogenation
C. Hydration
D. Halogenation
A. Butanoic acid
B. Ethanoic acid
C. Propanoic acid
D. Pentanoic acid
A. HCl
B. H₂O
C. BF₃
D. NH₃
A. Acetone
B. Propanone
C. Butanone
D. Ethanal
A. Hydrogenation
B. Halogenation
C. Hydration
D. Dehydration
A. Ethylamine
B. Propylamine
C. Butylamine
D. Methanamine
A. Halogenation
B. Hydrogenation
C. Hydration
D. Dehydration
A. Ethanol
B. Propanol
C. Butanol
D. Isopropanol
A. Hydrogenation
B. Halogenation
C. Hydration
D. Dehydration
A. Butanone
B. Pentanone
C. Hexanone
D. Propanone
A. Halogenation
B. Hydrogenation
C. Hydration
D. Anti-Markovnikov addition
A. Butanoic acid
B. Ethanoic acid
C. Propanoic acid
D. Pentanoic acid
A. Helium
B. Neon
C. Argon
D. Krypton
A. Fluorine, Chlorine, Bromine
B. Sodium, Potassium, Lithium
C. Carbon, Nitrogen, Oxygen
D. Iron, Nickel, Cobalt
A. Atomic number
B. Atomic mass
C. Electronegativity
D. Ionization energy
A. Sodium chloride
B. Sodium nitrate
C. Sodium sulfate
D. Sodium carbonate
A. d-block
B. s-block
C. p-block
D. f-block
A. Silicon
B. Sulfur
C. Sodium
D. Silver
A. Sublimation
B. Evaporation
C. Condensation
D. Fusion
A. H₂SO₄
B. HCl
C. HNO₃
D. H₂O
A. Calcium carbonate
B. Calcium chloride
C. Calcium nitrate
D. Calcium sulfate
A. Fluorine
B. Oxygen
C. Nitrogen
D. Carbon
A. Hg
B. Me
C. Mg
D. He
A. Period 6
B. Period 4
C. Period 5
D. Period 7
A. Carbon dioxide
B. Carbon monoxide
C. Calcium oxide
D. Copper oxide
A. Iron
B. Iodine
C. Iridium
D. Indium
A. NH₄⁺
B. NH₃
C. NH₂Cl
D. NH₂OH
A. Period 7
B. Period 6
C. Period 5
D. Period 7
A. Xenon
B. Xenium
C. Xenite
D. Xylose
A. Hydrochloric acid
B. Hydrofluoric acid
C. Hydrobromic acid
D. Hydrosulfuric acid
A. Potassium
B. Phosphorus
C. Palladium
D. Platinum
A. Electrons shells
B. Valence electrons
C. Protons
D. Neutrons
A. Magnesium sulfate
B. Magnesium chloride
C. Magnesium nitrate
D. Magnesium carbonate
A. Oganesson
B. Radon
C. Francium
D. Radium
A. Iron
B. Iodine
C. Indium
D. Iridium
A. Methane
B. Ethane
C. Propane
D. Butane
A. Neon
B. Sodium
C. Nickel
D. Nitrogen
A. Condensation
B. Evaporation
C. Sublimation
D. Fusion
A. Sodium
B. Chlorine
C. Calcium
D. Sulfur
A. Potassium nitrate
B. Potassium chloride
C. Potassium sulfate
D. Potassium carbonate
A. Lead
B. Lithium
C. Lanthanum
D. Lutetium
A. Water
B. Hydrogen peroxide
C. Hydrochloric acid
D. Hydrogen sulfide
A. Boron
B. Bromine
C. Barium
D. Bismuth
A. Sodium hydroxide
B. Sodium peroxide
C. Sodium chloride
D. Sodium carbonate
A. Cl⁻
B. Ca²⁺
C. K⁺
D. SO₄²⁻
A. mol/L
B. g/L
C. L/mol
D. mol/g
A. NaCl
B. Na₂SO₄
C. NaNO₃
D. NaHCO₃
A. Gold
B. Silver
C. Platinum
D. Palladium
A. Barium sulfate
B. Barium chloride
C. Barium nitrate
D. Barium carbonate
A. Silver
B. Silicon
C. Sodium
D. Sulfur
A. Group 1
B. Group 2
C. Group 17
D. Group 18
A. Phosphorus pentachloride
B. Phosphorus trichloride
C. Phosphorus pentoxide
D. Potassium chloride
A. Neon
B. Nitrogen
C. Nickel
D. Natrium
A. Calcium nitrate
B. Calcium nitride
C. Calcium nitrite
D. Calcium nitrate
A. f-block
B. p-block
C. d-block
D. s-block
A. Chlorine
B. Chromium
C. Cobalt
D. Cesium
A. Iron(II) oxide
B. Iron(III) oxide
C. Iron(IV) oxide
D. Iron pentoxide
A. Copper
B. Calcium
C. Cesium
D. Chromium
A. Carbon oxide
B. Carbon monoxide
C. Carbon dioxide
D. Calcium oxide
A. Group 18
B. Group 17
C. Group 1
D. Group 2
A. Aluminum oxide
B. Aluminum hydroxide
C. Aluminum chloride
D. Aluminum nitrate
A. Carbon
B. Tungsten
C. Platinum
D. Iron
A. Sulfurous acid
B. Sulfuric acid
C. Hydrochloric acid
D. Hydrobromic acid
A. Neodymium
B. Nickel
C. Nitrogen
D. Neon
A. Ammonium chloride
B. Ammonium nitrate
C. Ammonium sulfate
D. Ammonium carbonate
A. Tin
B. Titanium
C. Tantalum
D. Thallium
A. Carbonate
B. Chlorate
C. Chromate
D. Cyanate
A. Lead
B. Lithium
C. Lanthanum
D. Lutetium
A. Nitric acid
B. Nitrous acid
C. Hydrobromic acid
D. Hydroiodic acid
A. f-block
B. p-block
C. d-block
D. s-block
A. Potassium carbonate
B. Potassium chloride
C. Potassium nitrate
D. Potassium sulfate
A. Actinide
B. Alkali metal
C. Noble gas
D. Metalloid
A. Hydrogen sulfide
B. Hydrochloric acid
C. Hydrobromic acid
D. Hydrosulfuric acid
A. CaCO₃
B. NaCl
C. KNO₃
D. MgSO₄
A. Iodine
B. Iron
C. Indium
D. Iridium
A. PV = nRT
B. P = V/nRT
C. PV = nT/R
D. PV = RT/n
A. Pascal (Pa)
B. Atmosphere (atm)
C. Torr
D. Bar
A. Condensation
B. Evaporation
C. Sublimation
D. Fusion
A. Acidity or alkalinity
B. Concentration of ions
C. Temperature
D. Pressure
A. q = mcΔT
B. q = nCΔT
C. q = ΔH
D. q = ΔS
A. Conservation of energy
B. Conservation of mass
C. Conservation of momentum
D. Conservation of charge
A. ΔG = ΔH - TΔS
B. ΔG = ΔH + TΔS
C. ΔG = ΔH/T
D. ΔG = -ΔH/T
A. Volume
B. Temperature
C. Moles
D. Concentration
A. w = -PΔV
B. w = PΔV
C. w = ΔH
D. w = ΔS
A. Dalton's law of partial pressures
B. Boyle's law
C. Charles's law
D. Avogadro's law
A. Joule (J)
B. Calorie (cal)
C. Electronvolt (eV)
D. Watt (W)
A. u = √(3RT/M)
B. u = √(RT/M)
C. u = √(2RT/M)
D. u = √(4RT/M)
A. Gibbs free energy
B. Enthalpy
C. Entropy
D. Internal energy
A. k = A * e^(-Ea/RT)
B. k = A * e^(Ea/RT)
C. k = A * e^(-RT/Ea)
D. k = A * e^(RT/Ea)
A. Sublimation
B. Fusion
C. Evaporation
D. Condensation
A. Boyle's law
B. Charles's law
C. Avogadro's law
D. Gay-Lussac's law
A. ΔU = q + w
B. ΔU = q - w
C. ΔU = q * w
D. ΔU = q / w
A. Second law of thermodynamics
B. Zeroth law of thermodynamics
C. First law of thermodynamics
D. Third law of thermodynamics
A. Joule per Kelvin (J/K)
B. Calorie per Kelvin (cal/K)
C. Watt per Kelvin (W/K)
D. Coulomb per Kelvin (C/K)
A. R = 8.314 J/(mol·K)
B. R = 1.987 cal/(mol·K)
C. R = 0.0821 L·atm/(mol·K)
D. All of the above
A. B = F + 100
B. B = F + 32
C. B = F - 32
D. B = F - 100
A. Charles's law
B. Boyle's law
C. Avogadro's law
D. Gay-Lussac's law
A. Conduction
B. Convection
C. Radiation
D. Advection
A. c = λν
B. c = ν/λ
C. c = λ + ν
D. c = λ - ν
A. Boiling point
B. Melting point
C. Triple point
D. Critical point
A. ΔHrxn = Σ (bond energies broken) - Σ (bond energies formed)
B. ΔHrxn = Σ (bond energies formed) - Σ (bond energies broken)
C. ΔHrxn = Σ (bond energies broken) * Σ (bond energies formed)
D. ΔHrxn = Σ (bond energies broken) / Σ (bond energies formed)
A. k ∝ e^(Ea/RT)
B. k ∝ e^(-Ea/RT)
C. k ∝ e^(RT/Ea)
D. k ∝ e^(-RT/Ea)
A. Pauli exclusion principle
B. Hund's rule
C. Heisenberg uncertainty principle
D. Bohr's model
A. Deposition
B. Condensation
C. Sublimation
D. Evaporation
A. Gay-Lussac's law
B. Boyle's law
C. Charles's law
D. Dalton's law
A. Coulombs (C)
B. Amperes (A)
C. Volts (V)
D. Ohms (Ω)
A. Convection
B. Conduction
C. Radiation
D. Advection
A. Dalton's law of partial pressures
B. Boyle's law
C. Charles's law
D. Avogadro's law
A. Hertz (Hz)
B. Joule (J)
C. Watt (W)
D. Ohm (Ω)
A. Q = Kc
B. Q > Kc
C. Q < Kc
D. Q = 1
A. Rate = k[A]
B. Rate = k/[A]
C. Rate = k[A]^2
D. Rate = k√[A]
A. Sublimation
B. Deposition
C. Evaporation
D. Condensation
A. Pauli exclusion principle
B. Heisenberg uncertainty principle
C. Hund's rule
D. Schrödinger equation
A. i = 1 + n - 1
B. i = n - 1
C. i = n + 1
D. i = 1/n
A. Condensation
B. Evaporation
C. Sublimation
D. Deposition
A. PV = nRT
B. PV = RT/n
C. P = nRT
D. P = RT/n
A. Radiation
B. Conduction
C. Convection
D. Advection
A. ΔxΔp ≥ ħ/2
B. ΔxΔp ≤ ħ/2
C. ΔxΔp = ħ
D. ΔxΔp > ħ/2
A. Joule (J)
B. Calorie (cal)
C. Electronvolt (eV)
D. Watt (W)
A. Conduction
B. Convection
C. Radiation
D. Advection
A. ΔG = ΔH - TΔS
B. ΔG = ΔH + TΔS
C. ΔG = ΔH/T
D. ΔG = -ΔH/T
A. Bohr's model
B. Schrödinger equation
C. Pauli exclusion principle
D. Hund's rule
A. V/T = constant
B. PV = constant
C. P/T = constant
D. V = constant/T
A. Advection
B. Conduction
C. Convection
D. Radiation
A. The energy required to remove an electron from an atom
B. The energy released when an electron is added to an atom
C. The energy required to change the state of matter
D. The energy associated with electron spin
A. PV = constant
B. P/T = constant
C. V/T = constant
D. PV = nRT
A. q = mL
B. q = mcΔT
C. q = msΔT
D. q = nCΔT
A. 7
B. 0
C. 14
D. 1
A. 7
B. 0
C. 14
D. 1
A. 7
B. 0
C. 14
D. 1
A. Vaporization
B. Condensation
C. Evaporation
D. Sublimation
A. The energy released in a reaction
B. The energy required to initiate a reaction
C. The energy associated with the reactants
D. The energy associated with the products
A. ΔH° = Σ (bond energies formed) - Σ (bond energies broken)
B. ΔH° = Σ (bond energies broken) - Σ (bond energies formed)
C. ΔH° = Σ (bond energies broken) * Σ (bond energies formed)
D. ΔH° = Σ (bond energies broken) / Σ (bond energies formed)
A. Hund's rule
B. Pauli exclusion principle
C. Heisenberg uncertainty principle
D. Aufbau principle
A. Freezing
B. Deposition
C. Condensation
D. Sublimation
A. Measure of disorder or randomness
B. Total internal energy of a system
C. Ability to do work
D. Heat transfer at constant pressure
A. q = mcΔT
B. q = mL
C. q = msΔT
D. q = nCΔT
A. ΔG° = ΔH° - TΔS°
B. ΔG° = ΔH° + TΔS°
C. ΔG° = ΔH°/T
D. ΔG° = -ΔH°/T
A. w = -PΔV
B. w = PΔV
C. w = ΔH
D. w = ΔS
A. Advection
B. Conduction
C. Convection
D. Radiation
A. The most stable state of a substance
B. The state of a substance at 0°C and 1 atm pressure
C. The state of a substance in its natural form
D. The state of a substance in a closed system
A. HCl
B. H₂SO₄
C. HNO₃
D. H₃PO₄
A. HCl
B. CH₃COOH
C. H₂CO₃
D. HNO₂
A. H⁺ (Hydrogen ion)
B. OH⁻ (Hydroxide ion)
C. Cl⁻ (Chloride ion)
D. Na⁺ (Sodium ion)
A. Sulfuric acid
B. Nitric acid
C. Hydrochloric acid
D. Acetic acid
A. Basic
B. Neutral
C. Acidic
D. Alkaline
A. NH₃ (Ammonia)
B. KOH (Potassium hydroxide)
C. NaOH (Sodium hydroxide)
D. Ca(OH)₂ (Calcium hydroxide)
A. 0 to 6
B. 7 to 14
C. 0 to 14
D. 8 to 14
A. Citric acid
B. Acetic acid
C. Sulfuric acid
D. Hydrochloric acid
A. Neutralization
B. Oxidation
C. Reduction
D. Ionization
A. Lye
B. Baking soda
C. Vinegar
D. Milk of magnesia
A. NaOH (Sodium hydroxide)
B. NH₄OH (Ammonium hydroxide)
C. KOH (Potassium hydroxide)
D. CH₃COOH (Acetic acid)
A. Hydrogen ions (H⁺)
B. Hydroxide ions (OH⁻)
C. Sodium ions (Na⁺)
D. Chloride ions (Cl⁻)
A. Decreases
B. Increases
C. Remains constant
D. Becomes neutral
A. Hydrochloric acid (HCl)
B. Sulfuric acid (H₂SO₄)
C. Nitric acid (HNO₃)
D. Phosphoric acid (H₃PO₄)
A. Red
B. Blue
C. Green
D. Yellow
A. Bitter taste
B. Turns blue litmus paper red
C. Releases H⁺ ions
D. Low pH
A. Acetic acid (CH₃COOH)
B. Hydrochloric acid (HCl)
C. Sulfuric acid (H₂SO₄)
D. Nitric acid (HNO₃)
A. Acidic
B. Neutral
C. Basic
D. Alkaline
A. Hydrochloric acid
B. Muriatic acid
C. Nitric acid
D. Sulfuric acid
A. 8 to 14
B. 0 to 6
C. 0 to 14
D. 7 to 14
A. Sour taste
B. Sweet taste
C. Slimy feel
D. None of the above
A. Hydrogen gas
B. Oxygen gas
C. Carbon dioxide
D. Nitrogen gas
A. 7
B. 0 to 6
C. 8 to 14
D. 1 to 7
A. Hydrochloric acid (HCl)
B. Acetic acid (CH₃COOH)
C. Citric acid
D. Carbonic acid (H₂CO₃)
A. Baking soda
B. Bleaching powder
C. Table salt
D. Borax
A. Sodium hydroxide (NaOH)
B. Ammonium hydroxide (NH₄OH)
C. Potassium hydroxide (KOH)
D. Acetic acid (CH₃COOH)
A. 12
B. 2
C. 4
D. 6
A. Bitter taste
B. Sour taste
C. Red litmus turns blue
D. Releases H⁺ ions
A. 7.4
B. 6.5
C. 8.2
D. 5
A. 6
B. 8
C. 10
D. 12
A. Amphoteric
B. Neutral
C. Amphipathic
D. Amorphous
A. Vinegar acid
B. Citrus acid
C. Tartaric acid
D. Lactic acid
A. Acidity or alkalinity
B. Temperature
C. Density
D. Volume
A. Hydrochloric acid (HCl)
B. Acetic acid (CH₃COOH)
C. Sulfuric acid (H₂SO₄)
D. Nitric acid (HNO₃)
A. 10-fold
B. 5-fold
C. 2-fold
D. 3-fold
A. Ammonium hydroxide (NH₄OH)
B. Sodium hydroxide (NaOH)
C. Potassium hydroxide (KOH)
D. Calcium hydroxide (Ca(OH)₂)
A. Acid
B. Base
C. Salt
D. Indicator
A. Pink to colorless
B. Colorless to pink
C. Yellow to blue
D. Blue to yellow
A. Citric acid
B. Ascorbic acid
C. Tartaric acid
D. Malic acid
A. Base
B. Acid
C. Salt
D. Indicator
A. Turn blue litmus paper red
B. Feel slippery
C. Taste bitter
D. Release OH⁻ ions
A. HNO₃
B. HCl
C. H₂SO₄
D. H₃PO₄
A. Titration
B. Neutralization
C. Precipitation
D. Oxidation
A. Bitter taste
B. Sour taste
C. Slimy feel
D. Brown color
A. 3
B. 6
C. 9
D. 12
A. Acid-base reaction
B. Neutralization reaction
C. Precipitation reaction
D. Effervescence reaction
A. pH of 7
B. Red litmus turns blue
C. Releases H⁺ ions
D. Bitter taste
A. Caustic soda
B. Baking soda
C. Washing soda
D. Epsom salt
A. Litmus paper
B. Thermometer
C. Barometer
D. pH meter
A. 3
B. 7
C. 11
D. 14
A. Lactic acid
B. Citric acid
C. Acetic acid
D. Tartaric acid
A. 0 to 14
B. 0 to 7
C. 7 to 14
D. -7 to 7
A. Completely ionize in water
B. Partially ionize in water
C. Form a weak electrolyte
D. Have a pH above 7
A. H₂SO₄
B. HCl
C. HNO₃
D. H₃PO₄
A. 2
B. 6
C. 10
D. 14
A. Conduct electricity
B. Taste sour
C. Turn litmus paper green
D. Have a pH of 7
A. 5
B. 7
C. 9
D. 11
A. Determining the composition of substances
B. Studying atomic structure
C. Investigating chemical reactions
D. Analyzing geological formations
A. Atomic absorption spectroscopy
B. Infrared spectroscopy
C. Nuclear magnetic resonance
D. Gas chromatography
A. A technique for determining the concentration of a solution
B. A method for synthesizing new compounds
C. A process of distillation
D. A type of chromatography
A. Vapor pressure
B. Boiling point
C. Density
D. Molecular weight
A. Relating instrument response to analyte concentration
B. Identifying unknown substances
C. Quantifying atomic structure
D. Measuring reaction rates
A. Spectrophotometry
B. Mass spectrometry
C. Electrochemistry
D. NMR spectroscopy
A. Mass spectrometer
B. UV-Visible spectrophotometer
C. Gas chromatograph
D. NMR spectrometer
A. Separation based on solubility
B. Separation based on vapor pressure
C. Separation based on boiling point
D. Separation based on affinity for a stationary phase
A. Electrochemical methods
B. Spectroscopy
C. Chromatography
D. Titration
A. Reacting with the analyte to produce a product
B. Providing color to the solution
C. Acting as a solvent
D. Maintaining a constant temperature
A. Nuclear magnetic resonance (NMR)
B. Gas chromatography (GC)
C. Mass spectrometry (MS)
D. X-ray diffraction
A. Correcting for variations in experimental conditions
B. Providing reference materials
C. Enhancing sensitivity
D. Reducing reaction rates
A. Calorimetry
B. Potentiometry
C. Polarimetry
D. Colorimetry
A. High-performance liquid chromatography (HPLC)
B. Gas chromatography-mass spectrometry (GC-MS)
C. X-ray fluorescence (XRF)
D. Ultraviolet-visible (UV-Vis) spectroscopy
A. The closeness of a measurement to the true value
B. The precision of a measurement
C. The sensitivity of an instrument
D. The linearity of a calibration curve
A. Electrophoresis
B. Mass spectrometry
C. Chromatography
D. Spectrophotometry
A. Ensuring the reliability of results
B. Selecting the most expensive instruments
C. Decreasing the precision of measurements
D. Expanding the range of experimental conditions
A. Concentration of the analyte
B. Density of the sample
C. Temperature of the solution
D. pH of the solution
A. Provides detailed information about molecular structure
B. Requires minimal sample preparation
C. Operates at low cost
D. Measures color changes in solutions
A. Carries the sample through the stationary phase
B. Causes the separation of components
C. Provides stability to the column
D. Initiates the chemical reaction
A. Precision
B. Accuracy
C. Sensitivity
D. Linearity
A. Polarimetry
B. Mass spectrometry
C. Voltammetry
D. Potentiometry
A. Inductively coupled plasma mass spectrometry (ICP-MS)
B. High-performance liquid chromatography (HPLC)
C. Fourier-transform infrared spectroscopy (FTIR)
D. X-ray photoelectron spectroscopy (XPS)
A. Records the separation pattern of components
B. Provides color to the eluent
C. Measures the absorption of light
D. Initiates the chromatographic process
A. Potentiometry
B. Chromatography
C. Spectroscopy
D. Calorimetry
A. Remove interferences and enhance analyte concentration
B. Increase the volume of the sample
C. Decrease the sensitivity of the instrument
D. Speed up reaction rates
A. Ion chromatography
B. Gas chromatography
C. Liquid chromatography
D. Thin-layer chromatography
A. Atomic emission spectroscopy
B. Nuclear magnetic resonance
C. Ultraviolet-visible spectroscopy
D. Infrared spectroscopy
A. Sensitivity
B. Specificity
C. Selectivity
D. Accuracy
A. Immobilizes components, causing separation
B. Moves with the sample through the column
C. Measures the intensity of light
D. Initiates the chemical reaction
A. Volatility
B. Refractive index
C. Density
D. Viscosity
A. Kinetic spectrophotometry
B. Fluorimetry
C. Mass spectrometry
D. Infrared spectroscopy
A. To account for contamination from the environment
B. To calibrate the instrument
C. To provide a reference standard
D. To determine the precision of measurements
A. Headspace gas chromatography
B. Fourier-transform infrared spectroscopy
C. Liquid chromatography-mass spectrometry
D. Nuclear magnetic resonance
A. To monitor the stability of the instrument
B. To validate the accuracy of results
C. To optimize reaction conditions
D. To serve as a reference standard
A. X-ray fluorescence (XRF)
B. X-ray diffraction (XRD)
C. X-ray photoelectron spectroscopy (XPS)
D. X-ray absorption spectroscopy
A. Maintains a constant pH
B. Enhances the color of the solution
C. Accelerates the reaction rate
D. Increases the sensitivity of the electrode
A. Robustness
B. Sensitivity
C. Selectivity
D. Specificity
A. Fluorescence spectroscopy
B. Infrared spectroscopy
C. Ultraviolet spectroscopy
D. Nuclear magnetic resonance
A. Ionic charge
B. Molecular weight
C. Density
D. Refractive index
A. The lowest concentration that can be reliably measured
B. The point of maximum absorbance in a spectrum
C. The concentration of a standard solution
D. The range of linear response for an instrument
A. Potentiometry
B. Voltammetry
C. Conductometry
D. Coulometry
A. Measures the intensity of emitted light
B. Records the separation pattern in chromatography
C. Measures the absorbance or emission of light
D. Initiates chemical reactions
A. Dynamic light scattering
B. Static light scattering
C. Rayleigh scattering
D. Mie scattering
A. Nuclear magnetic resonance (NMR)
B. Electron spin resonance (ESR)
C. Mass spectrometry (MS)
D. Infrared spectroscopy
A. Conductometry
B. Amperometry
C. Coulometry
D. Voltammetry
A. Correct for variations in instrumental conditions
B. Enhance sensitivity
C. Provide a reference standard
D. Maintain a constant temperature
A. Selectivity
B. Sensitivity
C. Specificity
D. Linearity
A. Protects the analytical column from contaminants
B. Enhances the separation efficiency
C. Acts as a reference standard
D. Increases the sample volume
A. Electrophoresis
B. Chromatography
C. Spectroscopy
D. Calorimetry
A. The range over which the instrument provides accurate results
B. The correlation between absorbance and concentration
C. The ability to detect small changes in analyte concentration
D. The straightness of a calibration curve
A. Gas chromatography-mass spectrometry (GC-MS)
B. High-performance liquid chromatography (HPLC)
C. Ultraviolet-visible spectroscopy (UV-Vis)
D. Infrared spectroscopy
A. Provides a stable potential against which the analyte electrode can be measured
B. Measures the absorbance of light in a sample
C. Initiates the chemical reaction
D. Enhances the color of the solution
A. Provides separation based on interactions with sample components
B. Carries the sample through the column
C. Measures the intensity of emitted light
D. Initiates the chemical reaction
A. X-ray diffraction (XRD)
B. X-ray fluorescence (XRF)
C. X-ray photoelectron spectroscopy (XPS)
D. X-ray absorption spectroscopy
A. Selectively isolates a specific wavelength of light
B. Amplifies the signal from the detector
C. Initiates the chemical reaction
D. Measures the temperature of the sample
A. X-ray fluorescence (XRF)
B. Mass spectrometry (MS)
C. Nuclear magnetic resonance (NMR)
D. Gas chromatography (GC)
A. Measures the intensity of emitted light
B. Records the separation pattern in chromatography
C. Measures the absorbance or emission of light
D. Initiates chemical reactions
A. Repeatability
B. Robustness
C. Linearity
D. Sensitivity
A. The linear relationship between absorbance and concentration
B. The effect of temperature on absorbance
C. The wavelength of maximum absorbance
D. The interaction of light with matter
A. Adenosine triphosphate (ATP)
B. Deoxyribonucleic acid (DNA)
C. Ribonucleic acid (RNA)
D. Glucose
A. Catalysts that accelerate chemical reactions
B. Storage of genetic information
C. Structural support for cells
D. Transport of ions across membranes
A. Ribosome
B. Nucleus
C. Endoplasmic reticulum
D. Golgi apparatus
A. Nucleotide
B. Amino acid
C. Monosaccharide
D. Fatty acid
A. Transcription
B. Translation
C. Replication
D. Transformation
A. Protein
B. Carbohydrate
C. Lipid
D. Nucleic acid
A. ATP production through cellular respiration
B. Photosynthesis
C. Protein synthesis
D. Lipid synthesis
A. Anaerobic glycolysis
B. Citric acid cycle
C. Electron transport chain
D. Oxidative phosphorylation
A. Transporting oxygen
B. Assisting in cell division
C. Facilitating digestion
D. Providing structural support
A. Transfer RNA (tRNA)
B. Messenger RNA (mRNA)
C. Ribosomal RNA (rRNA)
D. Small nuclear RNA (snRNA)
A. Pyruvate
B. Acetyl-CoA
C. Citrate
D. Lactate
A. Synthesizing a new strand of DNA
B. Reading the RNA code
C. Breaking down DNA into nucleotides
D. Repairing damaged DNA
A. Vitamin C
B. Vitamin D
C. Vitamin A
D. Vitamin E
A. Mitochondria
B. Nucleus
C. Endoplasmic reticulum
D. Golgi apparatus
A. Providing a source of long-term energy
B. Serving as structural components in cell membranes
C. Facilitating insulation in animals
D. Aiding in enzyme catalysis
A. Modifying and packaging proteins for secretion
B. Synthesizing lipids
C. Producing ATP
D. Storing genetic information
A. Uracil (U)
B. Thymine (T)
C. Cytosine (C)
D. Guanine (G)
A. Phospholipids
B. Triglycerides
C. Steroids
D. Waxes
A. Unwinding the DNA double helix
B. Synthesizing a new DNA strand
C. Repairing damaged DNA
D. Reading the RNA code
A. Primary structure
B. Secondary structure
C. Tertiary structure
D. Quaternary structure
A. Proteins
B. Carbohydrates
C. Lipids
D. Nucleic acids
A. Regulating gene expression
B. Catalyzing chemical reactions
C. Storing genetic information
D. Facilitating cellular respiration
A. Translation
B. Transcription
C. Replication
D. Reverse transcription
A. Glycine
B. Alanine
C. Valine
D. Leucine
A. Synthesizing and modifying proteins
B. Producing ATP
C. Storing genetic information
D. Facilitating cell division
A. Peptide bond
B. Glycosidic bond
C. Ester bond
D. Hydrogen bond
A. Producing NADPH and ribose-5-phosphate
B. Synthesizing ATP
C. Oxidizing fatty acids
D. Facilitating glycolysis
A. mRNA (messenger RNA)
B. tRNA (transfer RNA)
C. rRNA (ribosomal RNA)
D. snRNA (small nuclear RNA)
A. Lipids
B. Proteins
C. Carbohydrates
D. Nucleic acids
A. Anaerobic respiration
B. Fermentation
C. Glycolysis
D. Oxidative phosphorylation
A. Codon
B. Anticodon
C. Intron
D. Exon
A. Nicotinamide adenine dinucleotide (NAD)
B. Adenosine triphosphate (ATP)
C. FADH2
D. Coenzyme Q
A. Beta-oxidation
B. Glycolysis
C. Citric acid cycle
D. Lipogenesis
A. Ribosomal RNA (rRNA)
B. Messenger RNA (mRNA)
C. Transfer RNA (tRNA)
D. Small nuclear RNA (snRNA)
A. Pyruvate
B. Acetyl-CoA
C. Lactate
D. Ethanol
A. RNA polymerase
B. DNA ligase
C. DNA helicase
D. DNA polymerase
A. Regulating blood glucose levels
B. Enhancing muscle growth
C. Stimulating bone formation
D. Increasing heart rate
A. Electron carrier in the electron transport chain
B. Enzyme that catalyzes glycolysis
C. Precursor for DNA synthesis
D. Component of the citric acid cycle
A. Methionine
B. Lysine
C. Leucine
D. Cysteine
A. Glycogenolysis
B. Gluconeogenesis
C. Glycolysis
D. Glycosylation
A. Breaks down RNA into nucleotides
B. Synthesizes RNA from DNA template
C. Joins two RNA molecules together
D. Facilitates translation of mRNA
A. Vitamin K
B. Vitamin B12
C. Vitamin D
D. Vitamin E
A. Photosynthesis
B. Glycolysis
C. Fermentation
D. Cellular respiration
A. Carbohydrates
B. Proteins
C. Nucleic acids
D. Lipids
A. Glucagon
B. Insulin
C. Cortisol
D. Thyroxine
A. Joining Okazaki fragments on the lagging strand
B. Unwinding the DNA double helix
C. Synthesizing a new DNA strand
D. Proofreading DNA for errors
A. Kinases
B. Ligases
C. Isomerases
D. Hydrolases
A. Cellular respiration
B. Anaerobic glycolysis
C. Fermentation
D. Glycogenolysis
A. Transporting fats in the bloodstream
B. Storing excess glucose
C. Facilitating muscle contraction
D. Serving as antioxidants
A. Cytosine (C)
B. Adenine (A)
C. Thymine (T)
D. Uracil (U)
A. Transcription
B. Translation
C. Replication
D. Reverse transcription
A. Mitochondria
B. Nucleus
C. Endoplasmic reticulum
D. Golgi apparatus
A. Valine
B. Serine
C. Alanine
D. Glutamine
A. Storing genetic information
B. Providing energy for cellular processes
C. Facilitating muscle contraction
D. Regulating blood glucose levels
A. Thyroxine (T4)
B. Insulin
C. Cortisol
D. Growth hormone
A. Synthesizing ATP from ADP and inorganic phosphate
B. Breaking down ATP to release energy
C. Facilitating the electron transport chain
D. Transporting electrons across the inner mitochondrial membrane
A. Ribosomal RNA (rRNA)
B. Messenger RNA (mRNA)
C. Transfer RNA (tRNA)
D. Small nuclear RNA (snRNA)
A. Translation
B. Transcription
C. Replication
D. Transformation
A. Glycolysis
B. Citric acid cycle
C. Oxidative phosphorylation
D. Fermentation
A. Assisting in the folding of newly synthesized proteins
B. Facilitating DNA replication
C. Breaking down damaged organelles
D. Storing genetic information