Chemistry - Physical Chemistry MCQS

A. mol/L
B. g/L
C. L/mol
D. mol/g
A. PV = nRT
B. P = V/nRT
C. PV = nT/R
D. PV = RT/n
A. Pascal (Pa)
B. Atmosphere (atm)
C. Torr
D. Bar
A. Condensation
B. Evaporation
C. Sublimation
D. Fusion
A. Acidity or alkalinity
B. Concentration of ions
C. Temperature
D. Pressure
A. q = mcΔT
B. q = nCΔT
C. q = ΔH
D. q = ΔS
A. Conservation of energy
B. Conservation of mass
C. Conservation of momentum
D. Conservation of charge
A. ΔG = ΔH - TΔS
B. ΔG = ΔH + TΔS
C. ΔG = ΔH/T
D. ΔG = -ΔH/T
A. Volume
B. Temperature
C. Moles
D. Concentration
A. w = -PΔV
B. w = PΔV
C. w = ΔH
D. w = ΔS
A. Dalton's law of partial pressures
B. Boyle's law
C. Charles's law
D. Avogadro's law
A. Joule (J)
B. Calorie (cal)
C. Electronvolt (eV)
D. Watt (W)
A. u = √(3RT/M)
B. u = √(RT/M)
C. u = √(2RT/M)
D. u = √(4RT/M)
A. Gibbs free energy
B. Enthalpy
C. Entropy
D. Internal energy
A. k = A * e^(-Ea/RT)
B. k = A * e^(Ea/RT)
C. k = A * e^(-RT/Ea)
D. k = A * e^(RT/Ea)
A. Sublimation
B. Fusion
C. Evaporation
D. Condensation
A. Boyle's law
B. Charles's law
C. Avogadro's law
D. Gay-Lussac's law
A. ΔU = q + w
B. ΔU = q - w
C. ΔU = q * w
D. ΔU = q / w
A. Second law of thermodynamics
B. Zeroth law of thermodynamics
C. First law of thermodynamics
D. Third law of thermodynamics
A. Joule per Kelvin (J/K)
B. Calorie per Kelvin (cal/K)
C. Watt per Kelvin (W/K)
D. Coulomb per Kelvin (C/K)
A. R = 8.314 J/(mol·K)
B. R = 1.987 cal/(mol·K)
C. R = 0.0821 L·atm/(mol·K)
D. All of the above
A. B = F + 100
B. B = F + 32
C. B = F - 32
D. B = F - 100
A. Charles's law
B. Boyle's law
C. Avogadro's law
D. Gay-Lussac's law
A. Conduction
B. Convection
C. Radiation
D. Advection
A. c = λν
B. c = ν/λ
C. c = λ + ν
D. c = λ - ν
A. Boiling point
B. Melting point
C. Triple point
D. Critical point
A. ΔHrxn = Σ (bond energies broken) - Σ (bond energies formed)
B. ΔHrxn = Σ (bond energies formed) - Σ (bond energies broken)
C. ΔHrxn = Σ (bond energies broken) * Σ (bond energies formed)
D. ΔHrxn = Σ (bond energies broken) / Σ (bond energies formed)
A. k ∝ e^(Ea/RT)
B. k ∝ e^(-Ea/RT)
C. k ∝ e^(RT/Ea)
D. k ∝ e^(-RT/Ea)
A. Pauli exclusion principle
B. Hund's rule
C. Heisenberg uncertainty principle
D. Bohr's model
A. Deposition
B. Condensation
C. Sublimation
D. Evaporation
A. Gay-Lussac's law
B. Boyle's law
C. Charles's law
D. Dalton's law
A. Coulombs (C)
B. Amperes (A)
C. Volts (V)
D. Ohms (Ω)
A. Convection
B. Conduction
C. Radiation
D. Advection
A. Dalton's law of partial pressures
B. Boyle's law
C. Charles's law
D. Avogadro's law
A. Hertz (Hz)
B. Joule (J)
C. Watt (W)
D. Ohm (Ω)
A. Q = Kc
B. Q > Kc
C. Q < Kc
D. Q = 1
A. Rate = k[A]
B. Rate = k/[A]
C. Rate = k[A]^2
D. Rate = k√[A]
A. Sublimation
B. Deposition
C. Evaporation
D. Condensation
A. Pauli exclusion principle
B. Heisenberg uncertainty principle
C. Hund's rule
D. Schrödinger equation
A. i = 1 + n - 1
B. i = n - 1
C. i = n + 1
D. i = 1/n
A. Condensation
B. Evaporation
C. Sublimation
D. Deposition
A. PV = nRT
B. PV = RT/n
C. P = nRT
D. P = RT/n
A. Radiation
B. Conduction
C. Convection
D. Advection
A. ΔxΔp ≥ ħ/2
B. ΔxΔp ≤ ħ/2
C. ΔxΔp = ħ
D. ΔxΔp > ħ/2
A. Joule (J)
B. Calorie (cal)
C. Electronvolt (eV)
D. Watt (W)
A. Conduction
B. Convection
C. Radiation
D. Advection
A. ΔG = ΔH - TΔS
B. ΔG = ΔH + TΔS
C. ΔG = ΔH/T
D. ΔG = -ΔH/T
A. Bohr's model
B. Schrödinger equation
C. Pauli exclusion principle
D. Hund's rule
A. V/T = constant
B. PV = constant
C. P/T = constant
D. V = constant/T
A. Advection
B. Conduction
C. Convection
D. Radiation
A. The energy required to remove an electron from an atom
B. The energy released when an electron is added to an atom
C. The energy required to change the state of matter
D. The energy associated with electron spin
A. PV = constant
B. P/T = constant
C. V/T = constant
D. PV = nRT
A. q = mL
B. q = mcΔT
C. q = msΔT
D. q = nCΔT
A. Vaporization
B. Condensation
C. Evaporation
D. Sublimation
A. The energy released in a reaction
B. The energy required to initiate a reaction
C. The energy associated with the reactants
D. The energy associated with the products
A. ΔH° = Σ (bond energies formed) - Σ (bond energies broken)
B. ΔH° = Σ (bond energies broken) - Σ (bond energies formed)
C. ΔH° = Σ (bond energies broken) * Σ (bond energies formed)
D. ΔH° = Σ (bond energies broken) / Σ (bond energies formed)
A. Hund's rule
B. Pauli exclusion principle
C. Heisenberg uncertainty principle
D. Aufbau principle
A. Freezing
B. Deposition
C. Condensation
D. Sublimation
A. Measure of disorder or randomness
B. Total internal energy of a system
C. Ability to do work
D. Heat transfer at constant pressure
A. q = mcΔT
B. q = mL
C. q = msΔT
D. q = nCΔT
A. ΔG° = ΔH° - TΔS°
B. ΔG° = ΔH° + TΔS°
C. ΔG° = ΔH°/T
D. ΔG° = -ΔH°/T
A. w = -PΔV
B. w = PΔV
C. w = ΔH
D. w = ΔS
A. Advection
B. Conduction
C. Convection
D. Radiation
A. The most stable state of a substance
B. The state of a substance at 0°C and 1 atm pressure
C. The state of a substance in its natural form
D. The state of a substance in a closed system