Chemistry - Atomic Structure
MCQS
A. Electron
B. Proton
C. Neutron
D. Quark
Electrons are the smallest subatomic particles with a negative charge.
A. Protons
B. Neutrons
C. Electrons
D. Nucleons
The atomic number is equal to the number of protons in an atom.
A. Niels Bohr
B. Erwin Schrödinger
C. J.J. Thomson
D. Dmitri Mendeleev
Bohr proposed the planetary model with electrons orbiting the nucleus.
A. 1
B. -1
C. 0
D. 2
Protons carry a positive charge of +1.
A. Azimuthal
B. Principal
C. Magnetic
D. Spin
The azimuthal quantum number determines the orbital shape.
A. 2
B. 6
C. 8
D. 10
The s sublevel can hold a maximum of 2 electrons.
A. James Chadwick
B. Ernest Rutherford
C. Marie Curie
D. J.J. Thomson
Chadwick discovered the neutron in 1932.
A. Carbon-14
B. Carbon-12
C. Carbon-13
D. Carbon-15
Carbon-14 is used in radiocarbon dating.
A. Spin
B. Energy level
C. Principal quantum number
D. Magnetic quantum number
The Pauli Exclusion Principle refers to the spin of electrons.
A. Sum of protons and electrons
B. Number of neutrons
C. Number of protons
D. Sum of protons and neutrons
Mass number is the sum of protons and neutrons in an atom.
A. 1
B. 2
C. 3
D. 4
The p sublevel consists of three orbitals.
A. Hydrogen
B. Helium
C. Lithium
D. Beryllium
Hydrogen is the first element with atomic number 1.
A. Energy level
B. Orbital shape
C. Spin
D. Magnetic quantum number
The principal quantum number represents the energy level.
A. -1
B. 1
C. 0
D. -2
Electrons carry a negative charge of -1.
A. 0
B. 1
C. -1
D. 2
Neutrons carry no net electric charge.
A. Electron
B. Proton
C. Neutron
D. Nucleus
Electrons have a very small and negligible mass.
A. Protons and electrons
B. Protons and neutrons
C. Electrons only
D. Neutrons only
The nucleus contains protons and neutrons.
A. Wave functions
B. Planetary orbits
C. Particle paths
D. Circular motion
The modern model is based on wave functions and probability.
A. 2
B. 8
C. 18
D. 32
The third energy level can hold a maximum of 18 electrons.
A. Potassium
B. Calcium
C. Argon
D. Scandium
Potassium has this electron configuration.
A. Erwin Schrödinger
B. Werner Heisenberg
C. Max Planck
D. Louis de Broglie
Schrödinger contributed to the development of quantum numbers.
A. Magnetic
B. Principal
C. Azimuthal
D. Spin
The magnetic quantum number specifies orbital orientation.
A. Half-life
B. Decay constant
C. Radiometric time
D. Nuclear stability
Half-life is the time for half the substance to decay.
A. Highest energy to lowest energy
B. Lowest energy to highest energy
C. Randomly
D. Alternating energy levels
Electrons fill orbitals in order of increasing energy.
A. Valence electrons
B. 2
C. 8
D. 18
Outermost level electrons are called valence electrons.
A. 2
B. 6
C. 10
D. 14
The f sublevel can hold a maximum of 14 electrons.
A. Werner Heisenberg
B. Niels Bohr
C. Max Planck
D. Erwin Schrödinger
Heisenberg proposed the uncertainty principle.
A. Isotope
B. Ion
C. Isomer
D. Isoform
Isotopes have the same number of protons but different neutrons.
A. Spherical
B. Linear
C. Dumbbell
D. Tetrahedral
S orbitals have a spherical shape.
A. Scandium
B. Titanium
C. Vanadium
D. Chromium
Titanium has this electron configuration.
A. Proton
B. Neutron
C. Alpha particle
D. Positron
The mass of an electron is approximately equal to a positron.
A. Same mass number, different atomic number
B. Same atomic number, different mass number
C. Same number of protons and electrons
D. Same number of neutrons
Isobars have the same mass number but different atomic numbers.
A. Neon
B. Sodium
C. Chlorine
D. Potassium
Neon is a noble gas in Group 18.
A. Hydrogen
B. Helium
C. Oxygen
D. Nitrogen
Bohr's model was primarily successful for hydrogen spectra.
A. Specific orbit
B. Fixed shell
C. Defined path
D. Region of space
The electron cloud model describes the probability of electron location.
A. Isotones
B. Isobars
C. Isomers
D. Isotopes
Isotopes have the same number of protons but different neutrons.
A. Louis de Broglie
B. Max Planck
C. Werner Heisenberg
D. Ernest Rutherford
De Broglie proposed the wave-particle duality of matter.
A. Wavelength
B. Frequency
C. Amplitude
D. Crest
Wavelength is the distance between wave peaks.
A. Waves
B. Particles
C. Clouds
D. Orbits
Electrons in the quantum model exhibit wave-like behavior.
A. Valence shell
B. Principal shell
C. Quantum shell
D. Core shell
The outermost shell is called the valence shell.
A. A region of high probability
B. A circular path
C. A fixed trajectory
D. A linear path
An orbital is a region of high probability of finding an electron.
A. Momentum
B. Energy
C. Speed
D. Spin
The Uncertainty Principle relates position and momentum.
A. 2
B. 6
C. 10
D. 14
The d sublevel can hold a maximum of 10 electrons.
A. Magnetic
B. Principal
C. Azimuthal
D. Spin
The azimuthal quantum number differentiates orbitals within the same energy level.
A. Silicon
B. Phosphorus
C. Sulfur
D. Chlorine
Silicon has this electron configuration.
A. Hydrogen
B. Helium
C. Oxygen
D. Fluorine
Bohr's model was successful for hydrogen's line spectrum.
A. Ionization
B. Electron affinity
C. Electronegativity
D. Electron transfer
Ionization involves gaining or losing electrons.
A. Electronegativity
B. Electron affinity
C. Ionization energy
D. Atomic radius
Electronegativity measures electron attraction in a bond.
A. Wave function of an electron
B. Mass of an electron
C. Charge of an electron
D. Spin of an electron
Schrödinger equation calculates electron wave functions.
A. Photoelectric effect
B. Compton scattering
C. Wave-particle duality
D. Quantum tunneling
The photoelectric effect is the ejection of electrons by light.
A. Niels Bohr
B. Max Planck
C. Louis de Broglie
D. Albert Einstein
Bohr introduced quantized angular momentum in atomic orbits.
A. Bromine
B. Krypton
C. Rubidium
D. Iodine
Bromine has this electron configuration.
A. Spin
B. Magnetic
C. Principal
D. Azimuthal
The spin quantum number describes electron spin.
A. Radioactive decay
B. Nuclear fission
C. Nuclear fusion
D. Nuclear transmutation
Radioactive decay involves the spontaneous emission of radiation.
A. Proton
B. Neutron
C. Electron
D. Nucleus
Neutrons and protons contribute to an atom's mass.
A. Isotones
B. Isomers
C. Isobars
D. Isotopes
Isotopes have the same atomic number but different mass.
A. Electrons
B. Protons
C. Neutrons
D. Nuclei
Quantum numbers describe electron behavior.
A. 2 protons and 2 neutrons
B. 2 electrons and 2 protons
C. 3 protons and 2 neutrons
D. 4 protons and 4 neutrons
An alpha particle is a helium nucleus with 2 protons and 2 neutrons.
A. Erwin Schrödinger
B. Werner Heisenberg
C. Louis de Broglie
D. Max Planck
Schrödinger developed equations for electron probability distribution.
A. Ionization energy
B. Electron affinity
C. Electronegativity
D. Atomic radius
Ionization energy is the energy needed to remove an electron.
A. Electron
B. Proton
C. Neutron
D. Positron
Beta decay emits an electron.
A. Atomic mass
B. Atomic number
C. Molar mass
D. Isotopic mass
Atomic mass is the weighted average mass of isotopes.
A. Iron
B. Cobalt
C. Nickel
D. Copper
Iron has this electron configuration.
A. Lowest energy state of an atom
B. Highest energy state of an atom
C. Stable state of an atom
D. Excited state of an atom
Ground state is the lowest energy state of an atom.
A. Aufbau principle
B. Pauli exclusion principle
C. Hund's rule
D. Heisenberg uncertainty principle
Aufbau principle dictates filling lowest energy orbitals first.
A. Neutron
B. Proton
C. Electron
D. Positron
Neutrons contribute to the stability of a nucleus.
A. Electron cloud
B. Orbital
C. Nucleus
D. Energy level
The electron cloud represents the probable location of an electron.
A. Energy levels
B. Orbitals
C. Sublevels
D. Quantum states
A quantum leap involves an electron moving between energy levels.
A. Max Planck
B. Niels Bohr
C. Louis de Broglie
D. Werner Heisenberg
Bohr introduced the concept of quantized energy levels.
A. Energy level
B. Orbital
C. Sublevel
D. Quantum state
An excited state corresponds to a higher energy level.
A. Same number of protons
B. Same number of electrons
C. Same atomic mass
D. Same nuclear charge
Isoelectronic species have the same number of electrons.
A. Rubidium
B. Strontium
C. Yttrium
D. Zirconium
Rubidium has this electron configuration.
A. Ionization energy
B. Electron affinity
C. Electronegativity
D. Atomic radius
Ionization energy is needed to remove an electron from a cation.
A. Proton
B. Neutron
C. Positron
D. Electron
Electron capture involves the absorption of an electron.
A. Indium
B. Tin
C. Antimony
D. Tellurium
Antimony has this electron configuration.
A. +1/2 or -1/2
B. 0 or 1
C. +1 or -1
D. 1/2 or 1
The spin quantum number can be +1/2 or -1/2.
A. Radioactive decay
B. Nuclear fusion
C. Nuclear transmutation
D. Fission reaction
Radioactive decay involves the spontaneous emission of radiation from an unstable nucleus.
A. Modern periodic law
B. Mendeleev's law
C. Avogadro's law
D. Boyle's law
The modern periodic law describes the periodicity of elements based on atomic numbers.
A. Uranium
B. Neptunium
C. Plutonium
D. Americium
Uranium has atomic number 92.
A. Clove-shaped
B. Spherical
C. Dumbbell
D. Tetrahedral
The d sublevel has a clove-shaped orbital.
A. d
B. s
C. p
D. f
The magnetic quantum number l = 2 corresponds to the d sublevel.
A. Nearest noble gas
B. Noble gas one period down
C. Noble gas two periods down
D. Noble gas one group over
Noble gas configuration resembles the nearest noble gas.
A. Electron configuration
B. Atomic structure
C. Electron arrangement
D. Energy distribution
Electron configuration describes the arrangement of electrons.
A. Gain electrons
B. Lose electrons
C. Form ions
D. Bond with other atoms
Electron affinity measures the tendency to gain electrons.
A. Radon
B. Radium
C. Rutherfordium
D. Rhodium
Radon has this electron configuration.
A. Splitting of a large nucleus
B. Fusion of small nuclei
C. Emission of alpha particles
D. Absorption of neutrons
Nuclear fission involves the splitting of a large nucleus into smaller fragments.
A. Isotope
B. Isoelectronic
C. Isomer
D. Isotone
Isoelectronic atoms have the same number of electrons.
A. Break a nucleus into protons and neutrons
B. Disintegrate an atom
C. Remove an electron from a nucleus
D. Hold a nucleus together
Nuclear binding energy is the energy needed to keep a nucleus intact.
A. Electron
B. Proton
C. Neutron
D. Nucleus
Electrons contribute to the magnetic properties of an atom.
A. Shell structure of electrons
B. Orbitals of electrons
C. Sublevels of electrons
D. Energy levels of electrons
The nuclear shell model is based on the shell structure of nucleons.
A. Passing through a barrier
B. Colliding with a barrier
C. Reflecting off a barrier
D. Absorbing a barrier
Quantum tunneling involves particles passing through a barrier.
A. Same mass number, different atomic number
B. Same atomic number, different mass number
C. Same energy level, different spin
D. Same spin, different energy level
Nuclear isomers have the same mass number but different atomic numbers.
A. Francium
B. Radium
C. Actinium
D. Radon
Francium has this electron configuration.
A. Repulsion between electrons
B. Attraction between electrons and protons
C. Reduction of effective nuclear charge
D. Increase in effective nuclear charge
Electron shielding reduces the effective nuclear charge felt by outer electrons.
A. Lanthanides
B. Actinides
C. Alkaline earth metals
D. Halogens
Lanthanides have filled f-orbitals.
A. Radium
B. Actinium
C. Thorium
D. Uranium
Actinium has this electron configuration.
A. Half the atoms in a sample to decay
B. All atoms in a sample to decay
C. One-third of atoms in a sample to decay
D. One-fourth of atoms in a sample to decay
Radioactive half-life is the time for half the atoms in a sample to decay.
A. s
B. p
C. d
D. f
The p sublevel is associated with n = 3.
A. Emission spectrum
B. Absorption spectrum
C. Fluorescence
D. Incandescence
Light is emitted in an emission spectrum during electron transitions.
A. Two electrons
B. Electron and proton
C. Photon and electron
D. Electron and neutron
Quantum entanglement involves correlated states of two electrons.