Chemistry - Thermodynamics MCQS

A. Energy transfer
B. Molecular structure
C. Chemical reactions
D. Particle acceleration
A. First Law
B. Second Law
C. Third Law
D. Zeroth Law
A. Disorder
B. Temperature
C. Pressure
D. Volume
A. First Law
B. Second Law
C. Third Law
D. Zeroth Law
A. Heat exchange
B. Pressure change
C. Volume change
D. Temperature change
A. Gibbs Free Energy
B. Helmholtz Free Energy
C. Enthalpy
D. Internal Energy
A. ΔS = Q/T
B. ΔS = T/Q
C. ΔS = Q - T
D. ΔS = Q + T
A. 1 atm pressure and 0°C
B. 1 atm pressure and 25°C
C. 0 atm pressure and 0 K
D. 0 atm pressure and 100°C
A. Isobaric expansion
B. Isothermal compression
C. Adiabatic process
D. Isenthalpic process
A. Zeroth Law
B. First Law
C. Second Law
D. Third Law
A. Direction of heat transfer
B. Conservation of energy
C. Entropy increase
D. Temperature equilibrium
A. 0 kJ/mol
B. 1 kJ/mol
C. -1 kJ/mol
D. Depends on the element
A. Endothermic
B. Exothermic
C. Adiabatic
D. Isothermal
A. Heat engine
B. Refrigerator
C. Heat pump
D. All of the above
A. 0 kJ/mol
B. 1 kJ/mol
C. -1 kJ/mol
D. Depends on the reaction
A. Constant temperature
B. Constant pressure
C. Constant volume
D. Adiabatic conditions
A. Molecular velocities
B. Molecular masses
C. Molecular sizes
D. Molecular energies
A. 0 J/(mol·K)
B. 1 J/(mol·K)
C. -1 J/(mol·K)
D. Depends on the substance
A. Negative
B. Positive
C. Zero
D. Depends on the process
A. First Law
B. Second Law
C. Third Law
D. Zeroth Law
A. Change in heat
B. Change in temperature
C. Change in pressure
D. Change in volume
A. Temperature remains constant
B. Pressure remains constant
C. Volume remains constant
D. Internal energy remains constant
A. ΔG° = -RT ln(K)
B. ΔG° = RT ln(K)
C. ΔG° = K/RT
D. ΔG° = -K/RT
A. H
B. E
C. G
D. S
A. ΔH° = 0
B. ΔH° = 1 kJ/mol
C. ΔH° = -1 kJ/mol
D. Depends on the reaction
A. Temperature
B. Pressure
C. Volume
D. Concentration
A. Not changing
B. Constant heat
C. Without heat exchange
D. Intense heat
A. Heat transfer in chemical reactions
B. Molecular structures of compounds
C. Particle interactions
D. Pressure changes in reactions
A. Heat capacity
B. Heat transfer
C. Radiant energy emission
D. Volume change
A. W
B. Q
C. ΔU
D. P
A. ΔG° = -RT ln(K)
B. ΔG° = RT ln(K)
C. ΔG° = K/RT
D. ΔG° = -K/RT
A. Heat
B. Work
C. Energy
D. Pressure
A. No change in entropy
B. No change in temperature
C. No change in pressure
D. No net change in the universe
A. Kinetic and potential energy
B. Heat and work
C. Pressure and volume
D. Entropy and enthalpy
A. Volume
B. Temperature
C. Internal energy
D. Enthalpy
A. Heat of formation
B. Heat of combustion
C. Heat of solution
D. Heat of fusion
A. Q = mcΔT
B. Q = mΔT/C
C. Q = C/mΔT
D. Q = ΔT/mC
A. Increase
B. Decrease
C. Remain constant
D. Depend on the system
A. Temperature
B. Pressure
C. Volume
D. Enthalpy
A. Temperature
B. Volume
C. Pressure
D. Heat transfer
A. Condensation
B. Vaporization
C. Sublimation
D. Deposition
A. Ideal gas behavior
B. Vapor pressure of a substance
C. Heat capacity of a gas
D. Enthalpy change in a reaction
A. (5/2)R
B. (7/2)R
C. (3/2)R
D. (9/2)R
A. 1 atm pressure and 0 K
B. 1 atm pressure and 25°C
C. 0 atm pressure and 0 K
D. 0 atm pressure and 100°C
A. 1.67
B. 1.4
C. 1
D. 2
A. Pressure
B. Volume
C. Entropy
D. Heat capacity
A. 0
B. 1
C. γ
D. -1
A. Temperature
B. Pressure
C. Volume
D. Internal energy
A. 1 - T₂/T₁
B. T₂/T₁
C. 1 - T₁/T₂
D. (T₁ - T₂)/T₁
A. Temperature
B. Pressure
C. Concentration
D. Volume
A. 0°C and 1 atm pressure
B. 100°C and 1 atm pressure
C. 0°C and 0 K
D. 100°C and 0 K
A. Temperature
B. Volume
C. Pressure
D. Entropy
A. Gas constant
B. Ideal pressure
C. Universal gas constant
D. Volume constant
A. Heat transfer during combustion
B. Vaporization of a substance
C. Phase transition of a substance
D. Chemical equilibrium
A. Pressure
B. Temperature
C. Volume
D. Molecular interactions
A. Heat transfer
B. Volume change
C. Pressure change
D. No heat transfer
A. ΔH = ΔU + ΔP
B. ΔH = ΔU + PΔV
C. ΔH = ΔU - PΔV
D. ΔH = ΔU/ΔP
A. J/(mol·K)
B. J/mol
C. J/L
D. J/K
A. The system does work on the surroundings
B. The surroundings do work on the system
C. No work is done
D. The work is reversible
A. All three phases coexist
B. The vapor pressure becomes zero
C. The substance becomes a supercritical fluid
D. The substance becomes a solid
A. Sublimation
B. Condensation
C. Vaporization
D. Melting
A. Heat transfer
B. Volume change
C. Pressure change
D. No heat transfer
A. Enthalpy
B. Internal energy
C. Entropy
D. Volume
A. Brought back to its initial state with no change in entropy
B. Achieved in one direction only
C. Spontaneous
D. Accompanied by a change in temperature
A. Adiabatic index
B. Isentropic exponent
C. Enthalpy ratio
D. Entropy index