Math
MCQS
A. 32
B. 38
C. 40
D. 48
Addition of 15 and 23 yields 38.
A. 18
B. 20
C. 22
D. 30
Applying a 20% discount reduces the price to $20.
A. 16
B. 20
C. 22
D. 24
First, perform the operation inside the parentheses, then multiply.
A. 8
B. 12
C. 15
D. 20
Calculate 15% of 80 by multiplying 0.15 by 80.
A. 20
B. 25
C. 30
D. 50
Area = length × width.
A. 0.043055555556
B. 0.085416666667
C. 0.12847222222
D. 0.17013888889
The given ratio is already in its simplest form.
A. 0.17013888889
B. 0.12847222222
C. 0.34375
D. 0.085416666667
Multiply the corresponding parts to find �:�x:z.
A. 100
B. 120
C. 150
D. 200
Divide 45 by 0.30 to find the original number.
A. 6776
B. 15141415
C. 3773
D. 2332
Multiply the numerators and denominators separately.
A. 60
B. 70
C. 80
D. 90
Calculate 25% of 120 and subtract from the initial amount.
A. 0.12783564815
B. 0.38350694444
C. 0.63916666667
D. 0.21258101852
Combine the ratios to get �:�:�a:b:c.
A. 48
B. 72
C. 144
D. 324
Multiply the powers with the same base.
A. 120 miles
B. 150 miles
C. 180 miles
D. 200 miles
Multiply speed by time to get distance.
A. 10
B. 16
C. 18
D. 24
Calculate 20% of 80 by multiplying 0.20 by 80.
A. 1221
B. 5885
C. 9889
D. 3443
Add the numerators and keep the common denominator.
A. 4 units
B. 6 units
C. 9 units
D. 12 units
Take the square root of the area to find the side length.
A. 3443
B. 1221
C. 3553
D. 2332
Write the decimal as a fraction and simplify.
A. 5
B. 7
C. 12
D. 17
Subtract 5 from both sides to isolate �x.
A. 5665
B. 815158
C. 10121210
D. 3223
Invert the second fraction and multiply.
A. 10, 14
B. 12, 14
C. 12, 16
D. 14, 16
Set up an equation and solve for the integers.
A. 30
B. 45
C. 60
D. 80
Divide 45 by 3443 to find the original number.
A. 5335
B. 7337
C. 3223
D. 4334
Add the whole number and fraction.
A. 8 units
B. 9 units
C. 10 units
D. 12 units
Use the perimeter formula and solve for the width.
A. -13
B. -40
C. 40
D. 13
Multiply the numbers, considering the signs.
A. 2 cups
B. 4 cups
C. 6 cups
D. 8 cups
Double the recipe for twice the number of servings.
A. 1221
B. 1331
C. 1661
D. 2332
Subtract the fractions with a common denominator.
A. �=10,�=5a=10,b=5
B. �=7,�=8a=7,b=8
C. �=8,�=7a=8,b=7
D. �=12,�=3a=12,b=3
Solve the system of equations.
A. 18
B. 20
C. 22
D. 25
Add the numbers and divide by the count.
A. 13
B. 18
C. 21
D. 26
Substitute �=5y=5 into the expression for �x.
A. �=7x=7
B. �=8x=8
C. �=9x=9
D. �=10x=10
Add 7 to both sides and then divide by 3 to find �x.
A. 25
B. 35
C. 40
D. 45
Multiply 2552 by the unknown number to find the value.
A. �=5x=5
B. �=7x=7
C. �=8x=8
D. �=10x=10
Subtract 5 from both sides and then divide by 2 to find �x.
A. 9
B. 12
C. 15
D. 18
Use the given ratio to find the number of boys.
A. 1551
B. 2552
C. 1221
D. 4554
Write the decimal as a fraction and simplify.
A. 25
B. 26
C. 27
D. 28
The pattern is adding consecutive odd numbers.
A. �=2,�=3a=2,b=3
B. �=3,�=2a=3,b=2
C. �=4,�=1a=4,b=1
D. �=1,�=4a=1,b=4
Solve the system of equations.
A. 4 units
B. 6 units
C. 8 units
D. 10 units
Use the formula: Area=��2Area=πr2.
A. 12
B. 18
C. 24
D. 30
Find 1441 by dividing 3443 by 3.
A. �=6x=6
B. �=8x=8
C. �=10x=10
D. �=12x=12
Divide both sides by 2 after simplifying the expression.
A. 10
B. 12
C. 16
D. 18
Arrange the numbers in ascending order and find the middle value.
A. 20
B. 25
C. 30
D. 35
Double 1331 to find 2332.
A. 13, 15, 17
B. 15, 17, 19
C. 17, 19, 21
D. 19, 21, 23
Set up an equation and solve for the consecutive odd numbers.
A. 4
B. 7
C. 10
D. 12
Add 3 to both sides to isolate �x.
A. 4 units
B. 6 units
C. 8 units
D. 10 units
Use the perimeter formula and solve for the width.
A. 5665
B. 11121211
C. 712127
D. 1221
Add the fractions with a common denominator.
A. 9
B. 27
C. 81
D. 243
Cube the base number.
A. 32
B. 48
C. 64
D. 72
Multiply 3883 by the unknown number to find the value.
A. 7, 8, 9, 10
B. 8, 9, 10, 11
C. 9, 10, 11, 12
D. 10, 11, 12, 13
Set up an equation and solve for the consecutive integers.
A. 25
B. 35
C. 40
D. 50
Multiply 2332 by 1.25 to find 4554.
A. �=4x=4
B. �=5x=5
C. �=6x=6
D. �=7x=7
Add 2 to both sides and then divide by 5 to find �x.
A. 30 degrees
B. 40 degrees
C. 50 degrees
D. 60 degrees
Divide the smallest ratio by the sum of the ratios and multiply by 180.
A. 12
B. 18
C. 24
D. 30
Divide 3553 by 3 to find 1551.
A. -10
B. 10
C. -21
D. 21
Multiply the numbers, considering the signs.
A. �=49x=49
B. �=42x=42
C. �=35x=35
D. �=32x=32
Divide both sides by 4774 to find �x.
A. �=3,�=5a=3,b=5
B. �=4,�=4a=4,b=4
C. �=5,�=3a=5,b=3
D. �=6,�=2a=6,b=2
Solve the system of equations.
A. 1441
B. 3443
C. 2332
D. 3553
Write the percentage as a fraction and simplify.
A. 2552
B. 4554
C. 3443
D. 2992
Invert the second fraction and multiply.
A. 4
B. 6
C. 7
D. 8
Subtract 3 from both sides to isolate �x.
A. 18, 19, 20
B. 19, 20, 21
C. 20, 21, 22
D. 21, 22, 23
Set up an equation and solve for the consecutive integers.
A. 27
B. 36
C. 48
D. 64
Multiply 2332 by 1.5 to find 3443.
A. �=3x=3
B. �=5x=5
C. �=9x=9
D. �=12x=12
Subtract 7 from both sides and then divide by 3.
A. 3
B. 4
C. 6
D. 8
Add 5 to both sides and then divide by 2.
A. �=3x=3
B. �=7x=7
C. �=9x=9
D. �=14x=14
Distribute the 2, simplify, and solve.
A. 3
B. 4
C. 5
D. 6
Subtract 3 from both sides and then divide by 4.
A. �=6x=6
B. �=9x=9
C. �=12x=12
D. �=15x=15
Subtract 5 from both sides and then multiply by 3223.
A. 4
B. 6
C. 7
D. 8
Add 2 to both sides and then divide by 3.
A. �=1x=1
B. �=2x=2
C. �=3x=3
D. �=4x=4
Distribute the 1441, simplify, and solve.
A. 2
B. 4
C. 6
D. 8
Subtract 7 from both sides and then divide by 2.
A. �=4x=4
B. �=5x=5
C. �=6x=6
D. �=8x=8
Distribute the 3553, simplify, and solve.
A. 5
B. 6
C. 7
D. 8
Add 3 to both sides and then divide by 5.
A. �=1x=1
B. �=2x=2
C. �=3x=3
D. �=4x=4
Distribute the 2772, simplify, and solve.
A. 3
B. 5
C. 6
D. 7
Subtract 4 from both sides and then divide by 3.
A. �=3x=3
B. �=4x=4
C. �=5x=5
D. �=6x=6
Distribute the 1221, simplify, and solve.
A. 7
B. 8
C. 9
D. 10
Add 1 to both sides and then divide by 2.
A. �=3x=3
B. �=4x=4
C. �=6x=6
D. �=9x=9
Distribute the 3443, simplify, and solve.
A. 4
B. 5
C. 6
D. 7
Subtract 5 from both sides and then divide by 4.
A. �=3x=3
B. �=4x=4
C. �=5x=5
D. �=6x=6
Distribute the 2332, simplify, and solve.
A. 4
B. 6
C. 7
D. 8
Add 2 to both sides and then divide by 3.
A. �=5x=5
B. �=7x=7
C. �=9x=9
D. �=10x=10
Distribute the 1551, simplify, and solve.
A. 6
B. 7
C. 8
D. 9
Subtract 3 from both sides and then divide by 2.
A. �=3x=3
B. �=6x=6
C. �=9x=9
D. �=12x=12
Distribute the 4994, simplify, and solve.
A. 5
B. 6
C. 7
D. 8
Subtract 6 from both sides and then divide by 3.
A. �=1x=1
B. �=2x=2
C. �=3x=3
D. �=4x=4
Distribute the 2552, simplify, and solve.
A. 4
B. 5
C. 6
D. 7
Add 1 to both sides and then divide by 4.
A. �=6x=6
B. �=8x=8
C. �=10x=10
D. �=12x=12
Distribute the 3883, simplify, and solve.
A. 6
B. 7
C. 8
D. 9
Subtract 5 from both sides and then divide by 2.
A. �=3x=3
B. �=4x=4
C. �=5x=5
D. �=6x=6
Distribute the 1331, simplify, and solve.
A. 6
B. 7
C. 8
D. 9
Add 2 to both sides and then divide by 3.
A. �=2x=2
B. �=4x=4
C. �=6x=6
D. �=8x=8
Distribute the 4774, simplify, and solve.
A. 5
B. 6
C. 7
D. 8
Subtract 3 from both sides and then divide by 5.
A. �=2x=2
B. �=5x=5
C. �=8x=8
D. �=10x=10
Distribute the 3443, simplify, and solve.
A. 6
B. 7
C. 8
D. 9
Subtract 7 from both sides and then divide by 2.
A. �=4x=4
B. �=6x=6
C. �=8x=8
D. �=10x=10
Distribute the 1221, simplify, and solve.
A. 4
B. 6
C. 7
D. 8
Add 4 to both sides and then divide by 3.
A. �=6x=6
B. �=8x=8
C. �=10x=10
D. �=12x=12
Distribute the 2552, simplify, and solve.
A. 3
B. 4
C. 5
D. 6
Subtract 3 from both sides and then divide by 4.
A. �=3x=3
B. �=5x=5
C. �=8x=8
D. �=10x=10
Distribute the 3773, simplify, and solve.
A. 4
B. 5
C. 6
D. 7
Subtract 2 from both sides and then divide by 5.
A. �=6x=6
B. �=8x=8
C. �=10x=10
D. �=12x=12
Distribute the 1441, simplify, and solve.
A. 3
B. 4
C. 5
D. 6
Add 5 to both sides and then divide by 3.
A. �=3x=3
B. �=5x=5
C. �=6x=6
D. �=8x=8
Distribute the 2332, simplify, and solve.
A. 4
B. 5
C. 6
D. 7
Subtract 7 from both sides and then divide by 4.
A. �=6x=6
B. �=8x=8
C. �=10x=10
D. �=12x=12
Distribute the 3553, simplify, and solve.
A. 5
B. 7
C. 8
D. 10
Add 3 to both sides and then divide by 2.
A. �=3x=3
B. �=6x=6
C. �=9x=9
D. �=12x=12
Distribute the 4994, simplify, and solve.
A. 4
B. 5
C. 6
D. 7
Subtract 2 from both sides and then divide by 5.
A. �=5x=5
B. �=7x=7
C. �=9x=9
D. �=10x=10
Distribute the 2332, simplify, and solve.
A. 4
B. 5
C. 6
D. 7
Add 2 to both sides and then divide by 3.
A. �=5x=5
B. �=7x=7
C. �=9x=9
D. �=10x=10
Distribute the 1551, simplify, and solve.
A. 5
B. 6
C. 7
D. 8
Subtract 5 from both sides and then divide by 2.
A. �=2x=2
B. �=4x=4
C. �=6x=6
D. �=8x=8
Distribute the 4774, simplify, and solve.
A. 4
B. 5
C. 6
D. 7
Add 4 to both sides and then divide by 3.
A. �=4x=4
B. �=6x=6
C. �=8x=8
D. �=10x=10
Distribute the 2552, simplify, and solve.
A. 4
B. 5
C. 6
D. 7
Subtract 7 from both sides and then divide by 4.
A. �=4x=4
B. �=6x=6
C. �=8x=8
D. �=10x=10
Distribute the 3773, simplify, and solve.
A. 5
B. 6
C. 7
D. 8
Add 2 to both sides and then divide by 5.
A. �=2x=2
B. �=5x=5
C. �=8x=8
D. �=10x=10
Distribute the 1221, simplify, and solve.
A. 5
B. 6
C. 7
D. 8
Subtract 5 from both sides and then divide by 3.
A. �=4x=4
B. �=6x=6
C. �=8x=8
D. �=10x=10
Distribute the 2332, simplify, and solve.
A. 4
B. 5
C. 6
D. 7
Add 3 to both sides and then divide by 4.
A. 90∘90∘
B. 180∘180∘
C. 270∘270∘
D. 360∘360∘
The sum of interior angles in a triangle is always 180∘180∘.
A. Octagon
B. Hexagon
C. Heptagon
D. Decagon
An octagon has eight sides.
A. Hypotenuse
B. Adjacent
C. Opposite
D. Base
The side opposite the right angle in a right-angled triangle is the hypotenuse.
A. 15 square units
B. 25 square units
C. 50 square units
D. 100 square units
Area of a rectangle = length × width.
A. 180∘180∘
B. 270∘270∘
C. 360∘360∘
D. 450∘450∘
The sum of angles in a quadrilateral is always 360∘360∘.
A. 14�14π units
B. 21�21π units
C. 28�28π units
D. 49�49π units
Circumference of a circle = 2�×2π× radius.
A. Cube
B. Pyramid
C. Cylinder
D. Sphere
A cube has all sides equal and right angles.
A. Equilateral
B. Isosceles
C. Scalene
D. Right-angled
The sides satisfy the Pythagorean theorem, making it a right-angled triangle.
A. 120∘120∘
B. 140∘140∘
C. 150∘150∘
D. 160∘160∘
In a regular hexagon, each interior angle is 120∘120∘.
A. 12 square units
B. 18 square units
C. 24 square units
D. 36 square units
Area of a square = side length × side length.
A. 50∘50∘
B. 90∘90∘
C. 130∘130∘
D. 180∘180∘
Opposite angles in a parallelogram are equal.
A. 5 units
B. 7 units
C. 10 units
D. 20 units
The radius of a circle is half the length of its diameter.
A. 16 units
B. 32 units
C. 40 units
D. 48 units
Perimeter of a rectangle = 2×(length+width)2×(length+width).
A. 12 square units
B. 24 square units
C. 30 square units
D. 48 square units
Area of a triangle = 12×base×height21×base×height.
A. 90∘90∘
B. 180∘180∘
C. 360∘360∘
D. 540∘540∘
The sum of interior angles in a pentagon is 540∘540∘.
A. 22 units
B. 44 units
C. 66 units
D. 88 units
In a square, the side length is diagonal22diagonal.
A. 30∘30∘
B. 45∘45∘
C. 60∘60∘
D. 90∘90∘
In a regular hexagon, each exterior angle is 60∘60∘.
A. 3 units
B. 4 units
C. 5 units
D. 6 units
The longest side in a triangle with sides in the ratio 3:4:5 is 5�5x where �x is a constant.
A. 9 cubic units
B. 18 cubic units
C. 27 cubic units
D. 36 cubic units
Volume of a cube = side length × side length × side length.
A. 4 units
B. 6 units
C. 8 units
D. 10 units
In a rectangle, the diagonal is the hypotenuse of a right-angled triangle formed by the length and width.
A. 18�18π square units
B. 27�27π square units
C. 36�36π square units
D. 81�81π square units
Area of a circle = �×radius2π×radius2.
A. 90∘90∘
B. 180∘180∘
C. 360∘360∘
D. It varies
Opposite angles in a trapezoid are supplementary, so their sum is 180∘180∘.
A. 14 square units
B. 21 square units
C. 28 square units
D. 35 square units
Area of a parallelogram = base × height.
A. Pentagon
B. Hexagon
C. Heptagon
D. Octagon
A pentagon has five sides.
A. 3 units
B. 4 units
C. 5 units
D. 6 units
Area of a triangle = 12×base×height21×base×height.
A. 45∘45∘
B. 90∘90∘
C. 135∘135∘
D. 160∘160∘
In a regular octagon, each interior angle is 135∘135∘.
A. 36�36π cubic units
B. 72�72π cubic units
C. 108�108π cubic units
D. 216�216π cubic units
Volume of a sphere = 43×�×radius334×π×radius3.
A. 2 units
B. 4 units
C. 5 units
D. 10 units
Perimeter of a square = 4×side length4×side length.
A. 60∘60∘
B. 90∘90∘
C. 120∘120∘
D. 180∘180∘
In a rhombus, each angle is 60∘60∘.
A. 5 units
B. 7 units
C. 10 units
D. 25 units
Area of a circle = �×radius2π×radius2.
A. 60∘60∘
B. 90∘90∘
C. 108∘108∘
D. 120∘120∘
In a regular pentagon, each interior angle is 108∘108∘.
A. Equilateral
B. Isosceles
C. Scalene
D. Right-angled
The angles 30∘30∘, 60∘60∘, and 90∘90∘ are characteristic of a right-angled triangle.
A. 2 units
B. 3 units
C. 4 units
D. 5 units
Area of a rectangle = length × width.
A. 90∘90∘
B. 120∘120∘
C. 135∘135∘
D. 140∘140∘
In a regular hexagon, each interior angle is 120∘120∘.
A. 2 units
B. 4 units
C. 6 units
D. 8 units
Area of a parallelogram = base × height.
A. 2 units
B. 3 units
C. 4 units
D. 6 units
Volume of a cylinder = �×radius2×heightπ×radius2×height.
A. Cone
B. Cylinder
C. Sphere
D. Prism
A cone has a circular base and a curved surface connecting the base to the apex.
A. 11 unit
B. 22 units
C. 33 units
D. 44 units
In a square, the side length is diagonal22diagonal.
A. 5 units
B. 7 units
C. 8 units
D. 10 units
Perimeter of a rectangle = 2×(length+width)2×(length+width).
A. 7�7π units
B. 14�14π units
C. 21�21π units
D. 28�28π units
Circumference of a circle = 2�×radius2π×radius.
A. 50∘50∘
B. 90∘90∘
C. 100∘100∘
D. 180∘180∘
The sum of angles in a triangle is always 180∘180∘.
A. 36 square units
B. 90 square units
C. 120 square units
D. 180 square units
Area of a rectangle = length × width.
A. Nonagon
B. Decagon
C. Octagon
D. Enneagon
A nonagon has nine sides.
A. 20 square units
B. 32 square units
C. 40 square units
D. 48 square units
Area of a triangle = 12×base×height21×base×height.
A. 22 units
B. 44 units
C. 66 units
D. 88 units
Volume of a cube = side length × side length × side length.
A. 36∘36∘
B. 54∘54∘
C. 72∘72∘
D. 108∘108∘
In a regular pentagon, each exterior angle is 72∘72∘.
A. 40 square units
B. 64 square units
C. 80 square units
D. 96 square units
Area of a trapezoid = 12×(sum of bases)×height21×(sum of bases)×height.
A. 3 units
B. 4 units
C. 5 units
D. 6 units
The shortest side in a triangle with sides in the ratio 3:4:5 is 3�3x where �x is a constant.
A. Equal in length
B. Perpendicular
C. Bisect each other
D. Both equal and bisect each other
In a rhombus, the diagonals are both equal in length and bisect each other.
A. 45∘45∘
B. 90∘90∘
C. 135∘135∘
D. 160∘160∘
In a regular octagon, each interior angle is 135∘135∘.
A. Equilateral
B. Isosceles
C. Scalene
D. Right-angled
The sides satisfy the Pythagorean theorem, making it a right-angled triangle.
A. 7 units
B. 14 units
C. 21 units
D. 49 units
Area of a circle = �×radius2π×radius2.
A. 90∘90∘
B. 180∘180∘
C. 360∘360∘
D. 540∘540∘
The sum of interior angles in a regular heptagon is 900∘900∘.
A. 3 units
B. 5 units
C. 6 units
D. 10 units
Area of a triangle = 12×base×height21×base×height.
A. 22 units
B. 33 units
C. 44 units
D. 66 units
Surface area of a cube = 6×side length26×side length2.
A. 36�36π cubic units
B. 72�72π cubic units
C. 108�108π cubic units
D. 216�216π cubic units
Volume of a sphere = 43×�×radius334×π×radius3.
A. 3 units
B. 4 units
C. 5 units
D. 6 units
Perimeter of a regular hexagon = 6×side length6×side length.
A. 48 square units
B. 64 square units
C. 80 square units
D. 96 square units
Area of a trapezoid = 12×(sum of bases)×height21×(sum of bases)×height.
A. Hexagon
B. Heptagon
C. Octagon
D. Hexadecagon
A hexagon has six sides.
A. 4�4π units
B. 8�8π units
C. 12�12π units
D. 16�16π units
Length of an arc = angle360∘×2�×radius360∘angle×2π×radius.
A. 39
B. 40
C. 41
D. 42
Follow the order of operations (BIDMAS/BODMAS): 8×6−32=48−9=398×6−32=48−9=39.
A. 5
B. 6
C. 7
D. 8
Subtract 5 from both sides of the equation.
A. 25
B. 26
C. 27
D. 28
The sequence adds consecutive odd numbers: 3,5,7,…3,5,7,….
A. 1331
B. 312123
C. 1441
D. 3553
Probability = Favorable outcomesTotal outcomesTotal outcomesFavorable outcomes.
A. 144
B. 192
C. 256
D. 324
Calculate the product of the powers of 2 and 3.
A. 24
B. 26
C. 28
D. 30
Apply a 20% discount to the original price.
A. �=5y=5
B. �=6y=6
C. �=7y=7
D. �=8y=8
Add 7 to both sides of the equation.
A. 4
B. 5
C. 6
D. 7
Subtract 4 from both sides of the equation.
A. 10
B. 11
C. 12
D. 13
The square root of a number is a value that, when multiplied by itself, gives the original number.
A. 3
B. 4
C. 5
D. 6
Subtract 3 from both sides of the equation and then divide by 2.
A. 120
B. 150
C. 210
D. 231
Multiply 2, 3, 5, 7, and 11.
A. 7
B. 13
C. 15
D. 23
Add 8 to both sides of the equation.
A. 20
B. 25
C. 26
D. 30
The sequence represents perfect squares: 22,32,42,52,6222,32,42,52,62.
A. 16
B. 18
C. 20
D. 22
Multiply 2 by 9 to find �c.
A. 90 miles
B. 120 miles
C. 150 miles
D. 180 miles
Distance = Speed × Time.
A. 1
B. 2
C. 3
D. 5
The smallest prime number is 2.
A. 4
B. 4.5
C. 5
D. 5.5
Add 7 to both sides of the equation and then divide by 4.
A. 45
B. 50
C. 55
D. 60
Use the formula for the sum of an arithmetic series: �2(�1+��)2n(a1+an).
A. 6
B. 7
C. 8
D. 9
Subtract 5 from both sides of the equation and then divide by 2.
A. 343
B. 427
C. 512
D. 729
7373 means 7×7×77×7×7.
A. 5
B. 6
C. 7
D. 8
Divide 21 by 3 to find �k.
A. 36
B. 42
C. 48
D. 54
The sequence doubles each time: 3×2,6×2,12×2,…3×2,6×2,12×2,….
A. 5
B. 6
C. 7
D. 8
Subtract 4 from both sides of the equation and then divide by 3.
A. 60
B. 120
C. 240
D. 360
The factorial of 5 is the product of all positive integers up to 5.
A. 5
B. 6
C. 7
D. 8
Add 3 to both sides of the equation and then divide by 2.
A. 90∘90∘
B. 180∘180∘
C. 270∘270∘
D. 360∘360∘
The sum of angles in a rectangle is always 360∘360∘.
A. 6
B. 8
C. 10
D. 12
�2=64x2=64 implies �=±64x=±64.
A. 14
B. 15
C. 16
D. 17
Use the formula for the average: Average=Sum of numbersNumber of numbersAverage=Number of numbersSum of numbers.
A. 840
B. 960
C. 1020
D. 1120
Multiply 2, 3, 5, 7, 11, and 13.
A. 5
B. 6
C. 7
D. 8
Divide 28 by 4 to find �n.
A. 12
B. 16
C. 18
D. 20
The sequence represents perfect squares: 12,22,32,42,5212,22,32,42,52.
A. 3
B. 4
C. 5
D. 6
Subtract 2 from both sides of the equation and then divide by 3.
A. 80 square units
B. 100 square units
C. 120 square units
D. 150 square units
Area of a rectangle = length × width.
A. 10
B. 11
C. 12
D. 13
Subtract 7 from both sides of the equation.
A. 60∘60∘
B. 90∘90∘
C. 180∘180∘
D. 360∘360∘
The sum of angles in an equilateral triangle is always 180∘180∘.
A. 6
B. 7
C. 8
D. 9
Subtract 6 from both sides of the equation and then divide by 2.
A. 94 square units
B. 104 square units
C. 114 square units
D. 124 square units
Surface area = 2(length×width+length×height+width×height)2(length×width+length×height+width×height).
A. 15
B. 16
C. 18
D. 20
Multiply 4 by 5 to find �b.
A. 6 units
B. 8 units
C. 9 units
D. 10 units
Use the Pythagorean theorem: �2=�2+�2c2=a2+b2.
A. 6
B. 7
C. 8
D. 9
Divide 27 by 3 to find �p.
A. 34
B. 35
C. 36
D. 42
The sequence adds consecutive multiples of 7.
A. 6
B. 7
C. 8
D. 9
Add 5 to both sides of the equation and then divide by 2.
A. 2
B. 4
C. 6
D. 8
Calculate the powers of 4 and 2, then divide.
A. 4
B. 5
C. 6
D. 7
Subtract 9 from both sides of the equation.
A. 3 units
B. 4 units
C. 5 units
D. 6 units
Area of a circle = �×radius2π×radius2.
A. 4
B. 5
C. 6
D. 7
Subtract 2 from both sides of the equation and then divide by 3.
A. 20
B. 24
C. 32
D. 64
The sequence doubles each time: 2×2,4×2,8×2,…2×2,4×2,8×2,….
A. 48
B. 50
C. 52
D. 54
Multiply 6 by 9 to find �y.
A. 90∘90∘
B. 120∘120∘
C. 180∘180∘
D. 360∘360∘
The sum of interior angles in a regular hexagon is 180(�−2)180(n−2) where �n is the number of sides.
A. 5
B. 6
C. 7
D. 8
Divide 35 by 5 to find �a.
A. 110
B. 121
C. 144
D. 169
The smallest square number greater than 100 is 112=121112=121.
A. 10
B. 11
C. 12
D. 13
Add 4 to both sides of the equation.
A. 4 units
B. 6 units
C. 8 units
D. 12 units
Perimeter of a square = 4×side length4×side length.
A. 3
B. 4
C. 5
D. 6
Subtract 7 from both sides of the equation and then divide by 2.
A. 16
B. 32
C. 40
D. 50
Calculate the squares and then subtract.
A. 21
B. 24
C. 27
D. 30
Multiply 3 by 8 to find �e.
A. 3 units
B. 6 units
C. 9 units
D. 12 units
Circumference of a circle = 2�×radius2π×radius.
A. 4
B. 5
C. 6
D. 7
Subtract 3 from both sides of the equation and then divide by 5.
A. 90
B. 105
C. 120
D. 135
Use the formula for the sum of an arithmetic series: �2(�1+��)2n(a1+an).
A. 3
B. 4
C. 5
D. 6
Add 2 to both sides of the equation and then divide by 3.